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Abstract

This paper suggests an automated financial analysis multi-
agent system based on modular rule-based architecture
implemented in Python. The design involves independent
agents—DataFetcherAgent, NewsAgent, and
FinancialExpertAgent—managed by a central
CoordinatorAgent [1] [2]. Stock data is fetched using the
yfinance library, and sentiment is emulated to replicate
actual world news polarity. The framework uses
deterministic principles based on financial metrics
including price-to-earnings (P/E) ratio, volume, and price
change to output explainable investment suggestions.
Transparent and extensible in nature, the architecture
eschews third-party cloud APIs and allows for complete
execution. The output is a structured investment advice:
type of recommendation (BUY/SELL/HOLD), risk,
confidence score, and sentiment summary. This
framework acts as a light and interpretable base for
subsequent investigations in agent-based systems,
financial intelligence, and rule-based AI and can be
further extended to include autonomous agents, natural
language processing, machine learning, or LLM-based
advisory systems [3][4].
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I. INTRODUCTION

The development of Multi-Agent Systems (MAS) has
been instrumental in changing the way intelligent
software is constructed through modularity, autonomy,
and decentralized decision-making. In the world of
financial analytics, MAS allows the view of a complex
task that is broken up - data fetching, sentiment estimation,
and the actual investment decision, into different agents,
while tightly coordinating yet acting independently. This
adheres to the notions of Distributed Artificial
Intelligence (DAI), and Agent-Oriented Software
Engineering (AOSE) and aids in building characteristics

to the system such as scalability, fault tolerance, and
modularity.
This paper proposes a rule-based financial analysis system
that is based on a MAS framework. The MAS consists of
lightweight agents related to data fetching, sentiment
estimation and decision making, with each agent designed
to act in an independent yet coordinated way. The system
allows for independence of using premium APIs and
cloud services by using data from public market data
sources, permitting it to offer transparency, explainability,
and full mode capabilities. This developed system is
suitable for academic purposes, training purposes, and
even semi-professional purposes. [5].

Figure 1: Multi Agent System

As AI systems continue to transform from self-contained,
magic boxes specific to certain tasks to collaborative
communities and ecosystems of multi-agent systems, the
proposed architecture of the Multi-Agent Financial
Analysis System can be enriched through the
implementation of emerging agent orchestration
frameworks. The agent orchestration frameworks
mentioned: Agent-to-Agent Protocol (A2A), Model
Context Protocol (MCP), and LangChain, are specifically
suited to the modular agent design proposed in this paper.

A. Agent-to-Agent (A2A) Protocol

The A2A protocol enables asynchronous communication
between autonomous agents, passing contextual
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information and task ownership in a decentralized process.
The current system has a CoordinatorAgent in charge of
both command and control of all sub-agents, but in A2A
the FinancialExpertAgent could query the NewsAgent
directly if it wanted updated sentiment context, or could
request additional data from the DataFetcherAgent if it
was missing the P/E ratio [6]. Thus, enabling a more
organic and scalable architecture where agents acted like
domain specialists, they could negotiate with each other,
or work collaboratively. In the high-frequency case, or in
general distributed architecture, the system is able to
manage fault tolerance, parallelism, and contextually
aware agent adaptation, since no agent is solely
responsible for everything [2] [7].

Figure 2: Agent 2 Agent Protocol

B. Model Context Protocol (MCP)

MCP provides a formal abstraction for tools and
functional access assigned to each agent. For example, the
NewsAgent might be associated with a particular web
scraping tool or a pre-trained NLP model, while the
DataFetcher might have secure API access to financial
databases [8]. The protocol supports:

 Authorization of access (e.g. APIs, scraping tools)
 Model/tool routing (i.e. which model to call

based on situational context)
 The encapsulation of execution context (i.e.,

local vs. cloud)

When an MCP structure is embedded, the system will
enable each agent access to only the tools that they should
be invoke, modifying behavior based on task requirements
and user preferences [21] [22].This means that the system
will be able to handle complex workflows such as
switching between contextual models (e.g., use FinBERT
for financial text, use LLM to summarize) or selection
fallback of tools if network/API access is unavailable [9]
[25].

Figure 3: Model Context Protocol

C. LangChain for Agent Orchestration

LangChain offers a solid orchestration layer for multi-
agent workflows, toolchains and memory sharing
capabilities. In the framework of the proposed system,
LangChain could be used as a task manager managing the
order and execution of agents, as well as managing
inputs/outputs, and possibly providing conversational user
interfaces. So for example, the user could ask: "Analyze
Apple's stock and tell me if I should buy it today."
LangChain could direct that inquiry to the right agents in
order: first call the DataFetcherAgent then the NewsAgent,
and finally compose output from the
FinancialExpertAgent [10] [11].

LangChain supports persistent memory so agents can
remember state across queries, and this is a key enabler of
an autonomous long-horizon analysis sessions, and long-
horizon simulations. By integrating tools/schemas and
chaining agents, LangChain positions this system for a
future where they interact with the system, as a composite
intelligence agent, instead of system performing a series
of hardcoded steps.

II. RELATEDWORK

A. Multi-Agent Systems in Financial

Applications

A Multi Agent System (MAS) refers to a common
distributed computational model of autonomous
interacting software agents. Within the finance literature,
MAS is used for modeling market dynamics, executing
trading strategies, managing portfolios, and providing
automated financial advice.

Each agent is autonomous; reacts to the environment they
interact with, communicate and interact with other agents,
and execute their task autonomously based on internal
rules or learned policies. Also, MAS allows a complex
financial workflow or task to be decomposed into
manageable workflows of components and to be able to
evolve, grow in complexity and interact asynchronously
without interdependence [1] [2].

Let the multi-agent system be represented as:
��� = (�, �, �, �)

 A = {a1, a2, … an}: A finite set of agents
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 E: The shared environment (e.g., market data,
state variables)

 P: A×E→Actions: Perception function
 C: A×A→M: Communication function

producing messages m ЄM
In our case:

 a1 = DataFetcherAgent
 a2 = NewsAgent
 a3 = FinancialExpertAgent
 a4 = CoordinatorAgent

The representation, through modular multi agent
architecture, satisfies principles of computational
efficiency, explainability and flexibility making the model
a good fit for real-time financial analysis [12].

B. Sentiment Analysis in Finance

Sentiment analysis is important today for financial
systems because it quantifies the underpinning emotional
tone of unstructured text data, such as news articles,
earnings reports, and analyst commentary. Thus, it
attempts to quantify investor sentiment, the mechanics of
which drive market volatility and asset momentum [13]
[14].

Let T = {t1, t2... tn} be a set of financial texts (e.g.,
headlines, articles). A sentiment function S: T→ [−1, +1]
maps each text to a polarity score, where:

 S(ti) = +1: Strong positive sentiment
 S(ti) = 0: Neutral sentiment
 S(ti) = −1: Strong negative sentiment

The aggregate sentiment S for a stock s is:

� = 1
n �=1

� S� �� , � �� ∈ [ − 1,1]

Where S(ti) is the polarity score derived from each textual
input.
Sentiment analysis uses behavioral knowledge to provide
more psychologically grounded financial
recommendations and be able to do that through a
completely interpretable system, which is a
complementary analysis for rule based logic [15] [24].

C. Rule-Based Decision Systems

Rule-based decision systems are structured on rules of
logic, so these systems will take deterministic IF-THEN
rules backed up with an action scheme to generate outputs

that you can take action on. When used for financial
applications, the advantages of this system are
immediately recognizable, such as the transparency,
audibility (traceability) and reasoning within the domain
[3].
In this example of decision-making, the
FinancialExpertAgent processes input in terms of things
like sentiment and the P/E ratio and provides a
recommendation based on an understanding of the rules
and logic but not using machine learning or APIs.

First, there is full explainability as each output is
determined from specific conditions in the input - you can
always go backwards from an output to conditions that
generated a recommendation. Second, there is no training
data and no tuning of models, meaning the
implementation costs and resources are very low. Third,
the rule-based logic is easily portable, which meets the
goals of deployable financial analysis software.
There are also advantages to embedding domain
knowledge into deterministic rules as the agent for
determination offered a stable platform for creating
intelligent decisions and consistently presented powerful
financial insight with clear explanations and potential
audits on the fly [4].

III. SYSTEM ARCHITECTURE AND
WORKFLOW

The planned financial analysis system is based on a multi-
agent architecture; that is, each autonomous agent will
have a specific and clearly defined role, based on DAI
principles (distributed artificial intelligence), which
allows for modularity, scalability and separation of
concerns among the different parts of the system. The
entire system is contained in a self-sufficient organism;
therefore, it is useful for data analysis exercises where the
status and prevision of secure and or controlled analysis is
required [1][2]. The core system comprises four agents:

 Coordinator Agent (Orchestration)
 DataFetcher Agent (Market Data Retrieval)
 News Agent (Sentiment Simulation)
 Financial Expert Agent (Decision Engine)

Each agent is a class-based module in Python, instantiated
and called in a sequence controlled by the coordinator.

https://ijetjournal.org/
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Figure 4: SystemWorkflow

A. DataFetcher Agent

The DataFetcher Agent is the first data access sub-
component of the system, which fetches both real and
historic stock market data using the yfinance Python
library, which is a programmatic access to the financial
statistics available on Yahoo Finance. This design choice
enables the full execution of the model. [16].

The agent is responsible for extracting key quantitative
features required for financial evaluation, including:

 Current Market Price (Pcurr​ )
 Previous Closing Price (Pprev​ )
 Trading Volume (V)
 Market Capitalization (M)
 Price-to-Earnings (P/E) Ratio (PE)

These metrics form the financial state vector F used in
downstream decision-making:

� = [�����, �����, �, �, ��]

The agent also computes derived indicators such as
percent price change:

∆�% = (
����� − �����

�����
) × 100

This quantitative data is sent as a structured dictionary
object to the Coordinator Agent, where it is then
combined with sentiment data for hybrid reasoning [5].

One of the many advantages of this agent is its integrated
simplicity and extensibility. Even though it uses yfinance
solely for prototype and educational purposes, it could
easily be modified for use with authenticated data streams
like Polygon.io or Alpha Vantage. Further, as it returns
simple raw numerical features that are interpretable, it
functions well in both rule-based systems, as well as
statistical learner models.

B. News Agent

The News Agent serves as the behavioral analysis portion
of the multi-agent architecture, forecasting market
sentiment while operating in environments that do not
offer NLP services via an API or where cost is a concern.
In traditional financial systems, financial sentiment is
gathered in real time using machine learning models from
data acquired from news headlines, finance blog postings,
and social media. The News Agent in this system
generates sentiment using a more simplistic, rule-based
approach [14] [15].

The agent generates three key sentiment-based features:

 Polarity (S) — a categorical value in {−1, 0, +1}
representing negative, neutral, or positive
sentiment

 Confidence Score — an integer from 0 to 100
quantifying certainty of the assigned sentiment

 Synthetic Summary — a basic descriptive
string emulating news-driven market
commentary

Formally, the sentiment vector S output by the agent is
defined as:

S = [Sentiment Polarity, Confidence Score]

The structure is designed to the output provided by NLP-
based financial sentiment classifiers. In other words,
segmentation of the problem into downstream agents (i.e.
the Financial Expert Agent) can take place.
The potential exists in a future iteration or extended
configuration of the agent to switch it out for broader
sentiment pipelines that utilize natural language
processing (BERT, FinBERT, or other LLM based Zero
shot classifiers etc) with live API inputs from something
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like NewsAPI, or the r/stocks subgroup on Reddit
[17][18]. This modularity allows you to move from
offline simulation to online deployment.

C. Financial Expert Agent

The Financial Expert Agent serves as the final decision-
making element in the multi-agent architecture. It
synthesizes both fundamental indicators, which are
obtained by the DataFetcher Agent, and behavioral
sentiment indicators, which are produced by the News
Agent in order to provide investment recommendations
that are interpretable by human investors [3]. This agent
makes recommendations using a rule-based deterministic
model that focuses on explainability.

The heart of this agent consists of a rule engine which
evaluates the incoming market data and its corresponding
sentiment polarity against a pre-defined logic file and
returns a BUY recommendation, a SELL
recommendation or a HOLD recommendation. The logic
is defined using conditional statements based on expert
heuristics [4]. Formally, let the recommendation rule be
defined as:

 BUY: If sentiment = +1 and PE < 30 →
Recommend BUY.

 SELL: If sentiment = –1 → Recommend SELL.
 HOLD: In all other cases →Recommend HOLD.

Each decision is provided with a confidence score (scaled
from the sentiment component), a risk level (LOW,
MEDIUM or HIGH), and a short analysis summary that
explains the basis for the recommendation. This structure
keeps the agent's output compliant with interpretability
criteria, to comply with financial advice, meaning that it
can be utilized for educational, research, and proof-of-
concept dimensions of usability.

In addition, the agent is modular and would permit any
increase to its capability. The developer could replace the
current rule-set with fuzzy logic, a decision tree, or a
probabilistic inference model - all depending on
complexity and the availability of data. While simple, this
design establishes a baseline for validating rule-based
strategies and demonstrating explainable AI principles in
finance.

D. CoordinatorAgent

The Coordinator Agent is the main processing agent for
the multi-agent financial analysis system. It manages the
execution pipeline and the data flow between specialized
agents, including the DataFetcher Agent, News Agent,
and Financial Expert Agent [19]. This agent implements
the Mediator design pattern in that it decouples agent

interactions while maintaining a clear and ordered
sequence of operations.

The Coordinator receives a single stock symbol SSS as
input and performs the analysis in three sub-tasks:

 Data Retrieval - Calls the fetch() method of the
DataFetcher Agent to retrieve structured
numerical stock data, which is represented as F.

 Sentiment Analysis - Calls the analyze() method
of the News Agent to simulate (or retrieve)
behavioral sentiment, represented as S.

 Recommendation - Calls the generate() method
of the Financial Expert Agent, passing both F
and S, which returns a final recommendation R Є
{BUY, SELL, HOLD}.

The coordination function C could be formally
represented as a composition function:

� � = � �, �
= ���������������(��������ℎ�� � , ��������� � )

Where:
 S: The stock symbol (e.g., AAPL, TSLA)
 F: Stock feature vector from DataFetcher Agent
 S: Sentiment vector from News Agent
 D: Decision logic from the Financial Expert

Agent

Figure 5: Interaction flow of the Financial Analysis System

In system design terms, the Coordinator Agent acts as:

 A controller: It controls the sequential
invocation of agents.

 A data integrator: It aggregates and passes
structured data between agents.

https://ijetjournal.org/
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 A result formatter: It consolidates outputs into
a final structured dictionary or JSON object for
downstream use (CLI, API, or report generation).

IV. ALGORITHMIC DESIGN

Input: stock_symbol (e.g., "AAPL")
Output: Final Recommendation ∈ {BUY, SELL,
HOLD}, along with confidence score and risk level.

The structured algorithm that outlines the core logic and
flow of Multi-Agent Financial Analysis System is as
follows:

1. Initialize the DataFetcherAgent
2. Initialize the NewsAgent
3. Initialize the FinancialExpertAgent
4. Fetch stock data using

DataFetcherAgent.fetch(S)
5. If stock data is invalid or missing, go to Step 15
6. Perform sentiment analysis using

NewsAgent.analyze(S)
7. Extract sentiment score and confidence level
8. If sentiment score is not valid, set it to neutral (0)
9. Generate recommendation using

FinancialExpertAgent.generate(S,
stock_data, news_data)

10. If sentiment score is +1 and PE ratio < 30, set
recommendation to BUY

11. If sentiment score is –1, set recommendation to
SELL

12. If none of the above conditions are satisfied, set
recommendation to HOLD

13. Compile final result with recommendation,
confidence score, risk level, and summary

14. Return the final output
15. Return default result with recommendation and

risk as HOLD and risk level as HIGH due to data
insufficiency

V. IMPLEMENTATION AND RESULTS

It is possible to launch the system from the command line
or invoked programmatically via its CoordinatorAgent
class. When the user enters a valid stock ticker symbol the
following will happen:
Data Fetchin
g:
The DataFetcherAgent utilizes the yfinance Python
package to retrieve stock fundamentals including:

 Current market price
 Previous close
 Trading volume
 Market capitalization
 Price-to-Earnings (P/E) ratio

News Simulation:

The NewsAgent currently simulates the sentiment data.
The NewsAgent will randomly assign a sentiment score
(+1, -1, or 0) along with a confidence level as done in
external news sentiment analysis pipelines.
Expert Rule Evaluation:
The FinancialExpertAgent applies a fixed rule set (as
shown in Section III) to decide whether to BUY, SELL, or
HOLD the asset. This decision is based on:

 The simulated sentiment value
 The P/E ratio threshold (typically < 30)

The result returned from the
CoordinatorAgent.analyze(symbol) method is a structured
JSON object containing:

 stock_data: Numerical financial indicators
retrieved from yfinance.

 news_data: Simulated sentiment and confidence.
 expert_analysis: Final recommendation with

confidence and explanation.

Figure 6: Output

VI. CONCLUSION AND FUTURE-SCOPE

This research presented the Multi-Agent Financial
Analysis System, which consists of four interdependent
agents: Data Fetcher, News Agent, Financial Expert, and
a central Coordinator. After fetching stock data and
sentiment indicators from several sources, the system
considers multiple indicators and generates a human-
readable output in the form of BUY, SELL, and HOLD
recommendations. The agent-based system creates a
modular solution and reduces future maintenance and
upgrades while providing flexibility, and possibly
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creativity, to practitioners working both in academic and
professional environments[17][18].
The system output shows the benefits of employing rule-
based logic and locally fetching information (using
yfinance) to provide data-driven outputs for low-resource
or air-gapped solutions that have privacy, cost, and
interpretability requirements. The sentiment engine
simulated sentiment to a certain extent, which ultimately
allows it to output the sentiment it achieves while
adhering to identifiable thresholds to make
recommendation decisions; this can be done without
heavy weight machine learning infrastructure, or external
key management.
In the future, a primary pathway is increasing agent
interoperability and tasking by providing autonomous
coordination metrics. The modular nature of the system
lends itself to the A2A (Agent-to-Agent) Protocol in
which agents (e.g., DataFetcher, NewsAgent,
FinancialExpert, etc.) would be free to communicate
dynamically with each other without relying on a single
centralized controller. Agents would be able to request,
forward, or refine data with each other, simulating
collaborative processes which we have observed in the
professional financial world [24]. As an example, a
FinancialExpert agent would be able to refer to a
NewsAgent autonomously in dealt with conflicting
signals, creating contextualization and flexibility in
decision making [17][23].
The system has already adopted both Model Context
Protocol (MCP) and Agent-to-Agent (A2A)
communication, facilitating agents to function
independently with contextual access to existing tools
such as datasets, scraping utilities, analysis modules, etc.
With LangChain for orchestration, the system is capable
of executing multiple sequential financial tasks in a
coordinated, multi-step manner and explainably. Future
enhancements could involve frameworks such as
LangGraph, facilitating memory-aware, event-driven
agent-based workflows which could help adaptability and
autonomy further. The evolution sets up the system as not
only a financial co-pilot, but also a framework for
architecting intelligent, domain-agnostic agents. The
agent could be deployed, for example, as an intelligent
healthcare diagnostic instrument, a learner-agnostic
personalized learning assistant, or while performing real-
time audit trail generation—as just a few use cases. Its
growth speaks to doing more than just financial
fulfillment as an AI decision making system. [3][20].
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