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Abstract— The security of modern communication
networks cannot be sufficiently ensured without intrusion
detection systems (IDS). The main objectives of these
systems have been pattern recognition, signature analysis,
and the detection of rule violations. Recent developments
in machine learning (ML) and deep learning (DL)
methodologies have shown potential as viable alternatives
in the domain of network intrusion detection (NID). These
methods can differentiate between typical and anomalous
patterns. This study evaluates network intrusion
detection systems (NIDS) using multiple ML algorithms,
such as KNN, decision trees (DT), XGBOOST, and
random forests (RF), with the NSL-KDD benchmark
dataset. We analyze the precision, recall, accuracy, and
F1 score of various ML techniques. The findings indicate
that machine learning methods substantially enhance
detection rates while minimizing false alarms compared
to traditional approaches. This research demonstrates not
only the feasibility of achieving a high detection rate of
attacks but also the capability to make accurate
predictions. These results clearly suggest that machine
learning holds significant potential for the development of
highly efficient NIDS systems.
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I. INTRODUCTION

In today’s digital landscape, networked systems play a vital
role in everyday activities, including communication,
information sharing, online transactions, and the operation
of critical infrastructure. As the volume of network traffic
continues to expand, network systems have become more
vulnerable to a wide range of cyberattacks, with intrusion
activities increasing over time. Intrusion detection plays a
critical role in preventing unauthorised access and misuse of
network data. Intrusion detection systems (IDS) detect
intrusions by classifying network traffic and differentiating
malicious behaviour from normal activity [1]. IDSs use two
primary approaches for attack detection, which are either
anomaly based or signature-based. An intrusion detection
system operates by identifying either known attack
signatures or deviations from established normal behaviour.
Signature-based intrusion detection, also known as misuse
or knowledge-based detection, relies on predefined attack
patterns stored in a signature database and primarily reacts
to known threats [2]. However, this approach is unable to
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detect novel or zero-day attacks, as it can only identify
threats that already exist in its signature database. However,
this approach is unable to detect novel or zero-day attacks,
as it can only identify threats that already exist in its
signature database. In addition, maintaining and updating a
large signature repository requires significant computational
resources, since incoming data packets must be continuously
compared against stored attack patterns. In contrast,
anomaly-based or behaviour-based intrusion detection
systems construct a model representing normal system
behaviour and detect intrusions by identifying activities that
significantly deviate from this model [3]. The limitations of
traditional intrusion detection techniques have motivated the
adoption of machine learning approaches for network
security. Due to the increasing volume and complexity of
network traffic, rule-based and signature-dependent systems
struggle to detect emerging and zero-day attacks. Machine
learning-based intrusion detection systems address these
challenges by automatically learning traffic patterns and
distinguishing between normal and malicious behaviors.
Machine learning techniques are widely used in intrusion
detection systems due to their ability to process large
volumes of network data, enabling more effective and
adaptive mechanisms for protecting information systems [4].
The effectiveness of such systems heavily depends on the
availability of reliable benchmark datasets for training and
evaluation. The NSL-KDD dataset, an improved version of
the KDD Cup 1999 dataset, is widely used in intrusion
detection research as it reduces redundancy and provides a
more balanced evaluation environment [5]. In this study, the
NSL-KDD dataset is utilized to conduct a comparative
analysis of Decision Tree, Random Forest, K-Nearest
Neighbour, and XGBoost models, with performance
assessed based on accuracy, computational efficiency, and
handling of imbalanced data using SMOTE.

The main points of this study are as follows:

e A comparison of various machine learning
algorithms for detecting network intrusions.

e  Utilizing the NSL-KDD dataset to make
benchmarking more reliable and less biased.

e Showing that Random Forest performs better than
other tested methods in accuracy, precision, recall,
and F1-score.

e Using SMOTE to improve the representation of
minority attack types and boost classification
accuracy.

e Providing insights that help in creating more
scalable and intelligent intrusion detection systems.
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II. LITERATURE REVIEW

Intrusion Detection Systems (IDS) play a crucial role in
safeguarding modern network infrastructures against
increasingly sophisticated cyber-attacks. Traditional security
mechanisms such as firewalls and antivirus software are often
insufficient in detecting novel and zero-day attacks, which has
led researchers to explore machine learning and deep learning
approaches for intrusion detection. The NSL-KDD dataset has
emerged as one of the most widely used benchmark datasets
for evaluating IDS performance due to its improved structure
over the original KDD’99 dataset. Early studies primarily
focused on analysing the characteristics of the NSL-KDD
dataset and evaluating the effectiveness of classical
classification algorithms. Dhanabal and Shantharajah
conducted an extensive analysis of the NSL-KDD dataset
using various classification techniques implemented in the
WEKA tool. Their study highlighted the relationship between
network protocols and attack types and demonstrated that
machine learning classifiers can effectively distinguish
between normal and anomalous traffic [6].

Subsequent research emphasised the comparative evaluation
of supervised machine learning algorithms for intrusion
detection. Belavagi and Muniyal evaluated Logistic
Regression, Naive Bayes, Support Vector Machine, and
Random Forest classifiers on the NSL-KDD dataset. Their
experimental results showed that Random Forest
outperformed other classifiers in terms of detection accuracy,
reinforcing the suitability of ensemble learning methods for
IDS applications [7].

With the advancement of computational resources,
researchers began exploring hybrid and ensemble approaches
to improve detection performance. A comparative study of
intrusion detection systems demonstrated that combining
multiple machine learning models can enhance classification
accuracy while reducing false alarm rates. The study
emphasized that no single algorithm performs optimally
across all attack categories, highlighting the importance of
comparative analysis in IDS research [8].

Other studies focused on feature selection and performance
optimization to reduce computational complexity. Research
comparing different intrusion detection techniques
demonstrated that selecting relevant features significantly
improves detection accuracy and processing efficiency. These
studies also highlighted the importance of preprocessing steps
such as normalization and categorical feature encoding when
working with the NSL-KDD dataset [9].

More recent work has emphasized the need for continuous
evaluation and benchmarking of IDS models due to the
dynamic nature of cyber threats. Studies published in
engineering and technology journals demonstrated that while
deep learning models achieve higher accuracy, they often
require greater computational resources. This trade-off
highlights the importance of selecting IDS models based on
application requirements and resource constraints [10].

ITI. METHODOLOGY

A. Dataset Description

This study utilizes the NSL-KDD dataset, a widely
recognized benchmark for intrusion detection research. NSL-

KDD is an enhanced version of the original KDD’99 dataset,
developed to address key limitations such as redundant
records, biased class distributions, and extremely frequent
instances. These improvements make NSL-KDD particularly
suitable for evaluating machine learning based intrusion
detection systems. The dataset consists of 125,972 instances,
each with 41 input features and 1 target label. Input features
include a mixture of continuous, discrete, and categorical
attributes, describing various characteristics of network
connections. Categorical features include protocol type
Transmission Control Protocol(TCP), User Datagram
Protocol- UDP, Internet Control Message Protocol-ICMP),
service (HTTP, SMTP), and flag (SF, SO), while numerical
features capture packet statistics, connection duration, and
other traffic characteristics. The target label identifies the type
of network activity and includes 22 classes, representing
normal connections and multiple attack types such as Denial-
of-Service (DoS), Probe, Remote-to-Local (R2L), and User-
to-Root (U2R) attacks. The dataset is divided into training and
testing subsets, with KDDTrain+ used for training and
KDDTest+ used for validation. Unlike KDD’99, NSL-KDD
avoids duplicate entries and provides a more balanced class
distribution, enabling machine learning models to generalize
better. The comprehensive structure combined with its
reduced redundancy and controlled class balance, makes
NSL-KDD a standard benchmark for evaluating IDS models
under realistic conditions.

B. Dataset Loading

The NSL-KDD dataset used in this study is stored in .txt
format and was imported into the Python environment using
the Pandas library, which enables efficient data manipulation
and preprocessing. The raw text file was converted into a
structured DataFrame using the read csv() function. This
ensured that each instance and its corresponding features
were organized in a tabular format suitable for subsequent
analysis and model training. After loading, the dataset
dimensions were verified to confirm the total number of rows
and columns. This step is crucial to ensure that the complete
dataset was successfully imported and that all instances were
available for preprocessing operations.

C. Data Preprocessing

Effective data preprocessing is a critical step in preparing the
NSL-KDD dataset for machine learning.

a) Encoding Categorical Features

Several features in NSL-KDD, such as protocol type, service,
and connection flags, are categorical in nature. Since most
machine learning algorithms require numerical input, these
attributes were converted into numerical codes. Each unique
category was assigned a distinct integer, preserving the
distinctions between categories while making the data
interpretable by the models. This step is essential for ensuring
that all features contribute effectively to the learning process
and prevent errors during model training.

b) Partitioning the Dataset

To accurately assess model performance on unseen data, the
dataset was divided into training and testing subsets using an
80/20 split. Stratified sampling was applied to maintain the
original distribution of classes in both subsets. This approach
ensures that each subset represents the variety of attack types
and normal traffic, allowing the models to learn from a
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representative sample and providing a reliable estimate of
their generalization ability on new network traffic.

¢) Filtering Rare Classes

Very few instances represent certain attack types in NSL-
KDD. These extremely rare classes can lead to instability
during training and negatively affect evaluation metrics.
Classes with fewer than ten samples were removed from the
training data, ensuring that the models focus on classes with
sufficient representation. This filtering improves the stability
of learning and reduces the risk of overfitting to
underrepresented attack types, resulting in more reliable
detection performance.

d) Data Intergity and Preparation Workflow

The preprocessing workflow also emphasizes overall data
integrity. Before training, the dataset was inspected for
missing or inconsistent values, ensuring that all instances are
complete and correctly formatted. The combination of
encoding, stratified splitting, and rare class removal provides
a clean, structured, and balanced dataset, forming a strong
foundation for machine learning experiments. These
preprocessing steps are designed to enhance learning
efficiency, improve model accuracy, and support fair
evaluation across all attack categories.

D. Handling Class Imbalance Using SMOTE

After the removal of rare attack classes, the training dataset
remained imbalanced, with majority classes dominating the
class distribution. To address this issue, the Synthetic
Minority Over-sampling Technique (SMOTE) was applied to
the training data. SMOTE generates synthetic samples for
minority classes by interpolating between existing data points
in the feature space, thereby improving class balance without
simply duplicating instances. The oversampling process was
performed exclusively on the training set to avoid data
leakage and to preserve the validity of the evaluation process.
By balancing the class distribution, this step reduced the bias
of machine learning models toward majority classes and
improved their ability to learn decision boundaries for
underrepresented attack categories.

E. Machine Learning Models

To evaluate the effectiveness of different classification
techniques for intrusion detection, four supervised machine
learning models were trained and compared. These models
were selected to represent a mix of simple, ensemble-based,
distance-based, and advanced boosting algorithms. All
models were trained using the SMOTE-balanced training
dataset to ensure fair comparison and to reduce bias toward
majority classes.

a) Decision Tree Classifier

The Decision Tree classifier is a widely used supervised
learning algorithm known for its simplicity and
interpretability. A Decision Tree is a non-parametric
supervised learning algorithm used for both classification and
regression problems. It represents the decision-making
process in a hierarchical tree structure composed of a root
node, internal decision nodes, branches, and leaf nodes. Each
internal node corresponds to a decision rule based on a
feature, while the leaf nodes represent the final predicted
outcomes [11]. This structure makes Decision Trees easy to
interpret and understand, particularly for classification tasks

It operates by recursively splitting the dataset based on
feature values, forming a tree-like structure where internal
nodes represent decision rules and leaf nodes represent class
labels. The splitting process aims to maximise class
separation at each step. Decision Trees can handle both
numerical and categorical features and do not require feature
normalisation or scaling. These properties make them well-
suited for network intrusion datasets such as NSL-KDD. In
this study, the Decision Tree classifier was trained on the
SMOTE-balanced dataset and used as a baseline model for
comparison with more complex algorithms.

b) Random Forest Classifier

Random Forest is an ensemble learning method that
constructs multiple decision trees, where each tree is
generated using a randomly sampled vector drawn
independently from the same distribution. The final
prediction is obtained by aggregating the outputs of all trees
in the forest. As the number of trees increases, the
generalization error of the model converges to a stable limit,
improving predictive performance and robustness [12]. Each
tree is built using a random subset of the training data and
features, and the final prediction is obtained through majority
voting among all trees. This ensemble strategy reduces
overfitting and improves generalization compared to a single
Decision Tree. Random Forest performs well on large and
high-dimensional datasets and is robust to noise and outliers.
Similar to Decision Trees, it does not require feature scaling.
In this work, a Random Forest model consisting of 100 trees
was trained on the SMOTE-balanced dataset to assess the
performance of an ensemble-based classifier for intrusion
detection.

¢) K-Nearest Neighbours (KNN)

K-Nearest Neighbour is a distance-based classification
algorithm that assigns a class label to a data instance based
on the majority class of its nearest neighbours in the feature
space. K-Nearest Neighbour (KNN) is a supervised machine
learning algorithm commonly used for classification tasks. It
classifies a data instance based on the majority class among
its K closest neighbours in the feature space [13]. Unlike
other classifiers, KNN does not build an explicit model
during training. Instead, all computations occur during
prediction, which can make it computationally expensive for
large datasets. KNN is also sensitive to class imbalance,
making the application of SMOTE essential before training.
This model was included to analyze how a distance-based
approach performs in comparison with tree-based classifiers
on the NSL-KDD dataset.

d) XGBoost Classifer

XGBoost (Extreme Gradient Boosting) is a supervised
machine learning algorithm based on gradient-boosted
decision trees. It builds an ensemble of trees sequentially,
where each new tree is trained to correct the errors made by
previous trees by optimising a differentiable loss function.
XGBoost incorporates regularisation, efficient handling of
sparse data, and optimised system design to achieve high
accuracy and scalability, making it suitable for large-scale
classification problems [14]. It was included to compare the
performance of a powerful boosting-based model with
simpler classifiers such as Decision Trees, Random Forest,
and KNN.
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IV.IMPLEMENTATION
A. EXPERIMENTAL SETUP

All experiments in this study were conducted using Google
Colab, which provides a cloud-based computational
environment suitable for training and evaluating machine
learning models. The NSL-KDD dataset was obtained from
Kaggle and loaded into the Colab environment for processing
and experimentation. The dataset was accessed directly
within the working directory, ensuring seamless data
handling without manual file transfers.

The experimental pipeline was implemented using the Python
programming language. Standard machine learning libraries
were employed, including Pandas and NumPy for data
manipulation, Scikit-learn for model training and evaluation,
Imbalanced-learn for handling class imbalance, and XGBoost
for implementing the gradient boosting classifier. These
libraries collectively enabled efficient preprocessing, model
development, and performance analysis. Prior to model
training, categorical features in the dataset were encoded into
numerical representations to ensure compatibility with
machine learning algorithms. The dataset was then divided
into training and testing subsets using an 80:20 split with
stratified sampling to preserve the original class distribution.
To improve training stability, rare classes with very low
sample counts were removed from the training set. Despite
this filtering, the dataset remained imbalanced; therefore, the
Synthetic Minority Over-sampling Technique (SMOTE) was
applied exclusively to the training data to generate synthetic
samples for minority classes and achieve a balanced class
distribution. Four supervised machine learning classifiers
were trained and evaluated: Decision Tree, Random Forest,
K-Nearest Neighbours (KNN), and XGBoost. All models
were trained on the SMOTE-balanced training dataset using
fixed random seeds to ensure reproducibility. The classifiers
were selected to represent diverse learning strategies,
including tree-based, ensemble-based, distance-based, and
boosting-based approaches. Model performance was
evaluated using the unseen test dataset. Accuracy was used as
the primary evaluation metric, while precision, recall, and F1-
score were also analyzed to provide a detailed assessment of
classification performance. The entire experimental setup
was designed to ensure reproducibility, fair comparison
among models, and reliable evaluation of intrusion detection
performance.

B. PERFORMANCE METRICS

Performance metrics assess the ability of the models to
correctly classify different types of network traffic and
attacks present in the NSL-KDD dataset. Since intrusion
detection datasets are often imbalanced, relying on a single
metric may be misleading; therefore, multiple evaluation
measures were considered.

a) Accuracy

Accuracy represents the proportion of correctly classified
samples among the total number of samples. It provides a
general indication of model performance; however, it may
not fully reflect effectiveness when class distributions are
imbalanced.

b) Precision

Precision measures the proportion of correctly predicted
positive samples among all samples predicted as positive.
High precision indicates a low false positive rate, which is
important in intrusion detection systems to avoid
misclassifying normal network traffic as malicious activity.

¢) Recall

Recall, also known as sensitivity, measures the proportion of
actual positive samples that are correctly identified by the
model. A high recall value indicates a low false negative rate.
In intrusion detection, recall is particularly important, as
failing to detect an attack can lead to serious security
consequences.

d) F1-Score

The F1-score is the harmonic mean of precision and recall. It
provides a balanced evaluation of a model’s performance,
especially when both false positives and false negatives must
be considered. This metric is particularly suitable for
imbalanced datasets such as NSL-KDD.

(Precision. Recall)

F1—Score =2+
( + )

e) Support

Support refers to the number of actual instances of each class
present in the test dataset. It helps in understanding the class
distribution and provides context for interpreting the
reliability of the reported precision, recall, and Fl-score
values for each category.

V. RESULTS AND DISCUSSION

This section presents the experimental results obtained by
evaluating four machine learning models—Decision Tree,
Random Forest, K-Nearest Neighbour (KNN), and
XGBoost—on the NSL-KDD dataset for network intrusion
detection. The models were assessed using accuracy,
precision, recall, and Fl-score to provide a comprehensive
comparison of their classification performance.

Among the models tested, the Random Forest classifier
showed the best overall performance. It achieved an accuracy
0f 0.8987 and exhibited strong precision, recall, and F1-score
values for the main types of attacks found in the NSL-KDD
Dataset. Although a slight reduction in performance was
observed for minority attack classes, Random Forest
managed class imbalance more effectively than the other
models. This is due to its ensemble nature, which combines
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predictions from multiple decision trees, leading to better
robustness and generalization. These characteristics make
Random Forest the most effective and dependable model in
this study for intrusion detection.

Both Random Forest and Decision Tree models achieved
high accuracy values and showed strong performance for
major attack categories. Their higher accuracy and weighted
Fl-scores indicate a better balance between correctly
identifying attacks and reducing false alarms. Random Forest
slightly outperformed the Decision Tree model, indicating
the benefit of ensemble learning rather than a single-tree
approach.

The XGBoost classifier showed moderate performance,
achieving better results than KNN but falling short of the tree-
based models. While XGBoost is known for its boosting
techniques, its performance in this study may have been
affected by dataset characteristics and parameter sensitivity.
KNN had the lowest accuracy among the models, mainly due
to its sensitivity to high-dimensional data and class
imbalance. Even with the use of SMOTE, KNN had difficulty
accurately classifying less common attack types.

In conclusion, Random Forest is recognized as the most
effective and reliable model for intrusion detection on the
NSL-KDD dataset, as supported by the experimental results
and comparative analysis. The use of weighted precision,
recall, and F1-score ensures that the evaluation reflects real-
world intrusion detection scenarios where attack and normal
classes are unevenly distributed.

TABLE I: Performance Comparison of Machine Learning
Models on the NSL-KDD Dataset

Model Accuracy Precision Recall F1-Score
(weighted)  (weighted) (weighted)
RF 0.8987 0.90 0.90 0.90
DT 0.8973 0.90 0.90 0.90
XGB 0.8592 0.87 0.86 0.86
KNN 0.8366 0.86 0.84 0.85

Accuracy Comparison of ML Models

Accuracy

XGBoost

Random Forest
Madels

Decision Tree

Fig.1: Accuracy Comparison of ML Models.

L L Precision, Recall, and F1-score Comparison

W Precision
- Recall

N F1 Score
0.95

£ 085
il

0.80

070

Decision Tree

Random Forest

Fig.2: Metric Comparison.

VI. CONCLUSION

This study can be extended in several meaningful ways to
improve the effectiveness of the intrusion detection system.
Future work can explore deep learning models such as CNNss,
RNNSs, or LSTMs, which may capture more complex attack
patterns than traditional machine learning methods. Feature
selection and dimensionality reduction techniques like PCA
or mutual information can also be applied to optimize
performance and reduce training time. Additionally, the
current work is based on offline data, so developing a real-
time IDS capable of analyzing live network traffic would
make the system more practical for real-world deployment.
As new cyberattacks continue to emerge, implementing
adaptive or online learning models can help the IDS update
itself automatically. The system can also be enhanced by
deploying it on cloud or edge platforms for better scalability,
and by integrating it with existing security tools such as
firewalls. Finally, although SMOTE helped address class
imbalance, more advanced resampling approaches could be
explored to further improve the detection of rare attack types.
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