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Abstract— The rise of spoofed audio poses significant risks,
including the spread of misinformation, fake news, and
substantial financial fraud. Recent developments in audio
generation, such as GANs, diffusion models, and
autoencoders, are rapidly evolving, and only three seconds
of a person's audio are required to clone their entire sound
and generate new audio that feels like it is being said by
them. While recent studies have predominantly focused on
spectral features and their derivatives for detecting spoofed
audio, this research explores the role of Root Mean Square
(RMS) and Zero-Crossing Rate (ZCR) values that cross a
specific threshold, interpreted as "breath,”" as potent
discriminators. We use statistical methods to explore how
the feature differ in real and fake audio data. Additionally,
we develop AudiolntegrityNet, a Convolutional Neural
Network (CNN) to classify audio as real or fake.

Keywords—Deepfakes, RMS, ZCR, Mann Whitney U Test,
MFCC, CNN, EER

L INTRODUCTION

In recent years, voice synthesis and voice-to-voice
cloning technologies have become more prominent.
They find many creative applications, such as generating
podcasts and audiobooks with a particular author’s voice
for a given script, as well as text-to-speech synthesis
systems. Like any technology, the rampant misuse of
these models has raised significant concerns. These
models have been misused to spread misinformation
and degrade trust in public authorities. According to
World Economic Forum report, 2024 [2] , during the
recently held 2024 Indian General Elections, many social
media platforms like X were flooded with deepfakes of
politicians making controversial statements.

A report by Signicat, 2024 [3] indicates that
deepfakes now represent 6.5% of total fraud attempts,
marking a 2137% increase over the past three years.
Another threat is the increased chances of spoofing
attacks on voice-based authentication systems.

The detection of audio deepfakes is critical in today's
digital landscape, where advanced voice synthesis
technologies pose significant risks to privacy, public
trust, and societal stability. As these deepfakes become
more sophisticated, they can be exploited to spread
misinformation, manipulate public opinion, and commit
fraud, particularly in sensitive areas such as politics and
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finance. The ability to convincingly mimic an individual's
voice raises concerns about identity theft and the
creation of fabricated audio recordings that can harm
reputations. As  deepfake technology evolves,
distinguishing between genuine and manipulated audio
becomes increasingly complex, highlighting the need for
robust detection methods. Effective audio deepfake
detection is essential for protecting individuals and
organizations and for maintaining the integrity of
information in an era of declining trust in media and
communication

While traditional approaches to audio deepfake
detection have relied heavily on spectral features since
these are the same features used by Generative
Adversarial Networks (GANs) and other synthesizers to
generate audio in the first place the adversarial game
raises concerns about their ability to detect future
deepfakes and recently there is a growing interest in
understanding the unique attributes of genuine human
voices. In this work, we aim to explore how breath as a
feature fare with respect to different types of Fake audio
generated from Text to Speech(TTS) synthesizers, voice-
to-voice conversion models, and Generative Adversarial
Networks.This research endeavors to develop a robust
classifier incorporating breath as a feature that
effectively  distinguishes between genuine and
manipulated audio, thereby contributing to the field of
audio forensics and addressing the urgent need for
reliable detection mechanisms in the face of evolving
audio synthesis technologies.

II. LITERATURE REVIEW

Voice synthesis technology has evolved significantly
since its inception in the 1970s. Early models relied on a
dictionary of spoken words, which were concatenated to
create audio streams for applications such as railway
station  announcements. @ The  development of
concatenative systems marked a pivotal advancement,
as these systems stitched together small, pre-recorded
phonemes to form coherent sentences. By the mid-2000s,
the introduction of Hidden Markov Models (HMMs) [8]
further improved the naturalness of synthesized speech,
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although these models still produced audio that could be

distinguished from authentic human voices.

The landscape of voice synthesis underwent a
transformative shift with the advent of neural network-
based approaches, particularly those utilizing Recurrent
Neural Networks (RNNs). This was followed by the
emergence of Generative Adversarial Networks (GANs)
[4] which introduced an adversarial learning paradigm.
In this framework, a generator and discriminator are
trained in opposition to one another, resulting in the
generation of human-like voice. GANs synthesize audio
by producing spectrograms from continuous Short-Time
Fourier Transform (STFT) values, thereby enhancing the
realism of the output.

Autoencoders [6] also play a significant role in voice
synthesis by compressing data from a higher-
dimensional space to a lower-dimensional
representation and subsequently reconstructing it back
to a higher dimension. Additionally, diffusion models [7]
have gained traction, operating by gradually adding
noise to an audio signal and then regenerating the
original audio file through a process of reverse diffusion.

As voice synthesis technologies have advanced,
distinguishing between real and spoofed audio has
become increasingly challenging. Early approaches to
audio deepfake detection used hand crafted features
short-term spectral features, long term spectral features
and prosodic features. Classifiers such as Gaussian
Mixture models and Neural Networks were mostly
employed [1].

[12] propose a system known as SpecRNet, inspired by
RawNet2, which utilizes LFCC features and achieves an
average Equal Error Rate (EER) of 0.1549 on the
WaveFake dataset. Meanwhile [13] address the
predominance of single-channel audio in existing
research, exploring the implications of mono-to-stereo
(dual-channel) conversion for audio deepfake detection.
They introduce a M2S converter that employs neural
time warping and Temporal CovNet to classify audio as
real or fake by analyzing signals split into right and left
branches.

The work of [17] takes a novel approach to deepfake
detection by  investigating the  fundamental
characteristics that define human authenticity in video.
Their research focuses on biological feature extraction,
specifically examining changes in skin color due to blood
flow through arteries and veins.

Additionally, [15] developed a Breath-Silence-Talking
Encoder (BTSE) Network that utilizes neural networks
to detect and classify three distinct activities within an
audio stream. Their Raw2Net model, which employs the
[BTSE] encoder, achieves an EER of 9.79 on the
ASVspoof 2021 dataset. Building on this approach, we
analyze existing literature on the use of breath patterns
as a feature for audio deepfake detection. The paper
"Every Breath You Do Not Take" [14] presents a method
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for extracting breath patterns by examining the
intersection of ZCR (Zero Crossing Rate) and RMS (Root
Mean Square) energy values. The authors assert a
significant correlation between the timestamps where
RMS and ZCR values intersect and the presence of breath.
The challenge of generalization and evolving deepfake
techniques necessitates exploring diverse features
beyond traditional spectral analysis. Multiple sources
emphasize the poor generalization ability of current
audio deepfake detection systems when faced with out-
of-domain data, unseen attacks, or different acoustic
conditions [20].

As deepfake generation technologies rapidly advance,
relying solely on low-level spectral imperfections might
become increasingly ineffective.

While "Every Breath You Don’t Take" hypothesizes and
shows that current deepfake generation techniques
often fail to incorporate breaths adequately, there is a
lack of detailed analysis in these papers on how Text-to-
Speech (TTS) and Voice Conversion (VC) models
specifically affect the RMS and ZCR patterns that are
characteristic of natural human breaths.

There is a clear gap in research that compares the
effectiveness and robustness of features derived from
RMS-ZCR intersections for breath detection against
these more traditional or deep learning-based features
in the specific task of audio deepfake detection.

RMS and ZCR capture essential temporal and energy-
related aspects of speech that might reveal subtle
inconsistencies in deepfakes. RMS reflects the signal's
power or amplitude over time, while ZCR provides
information about its frequency content and rapid
changes. The dynamic interplay between these
fundamental properties, particularly their threshold
crossings and intersections, could expose artifacts or
unnatural patterns introduced by deepfake generation
processes that are not adequately captured by spectral
features alone. Hence, studying these features becomes
essential, as it allows us to understand the nuances and
variations in synthetic audio generated by different
techniques, such as Generative Adversarial Networks
(GANs), autoencoders, and Text-to-Speech (TTS)
systems. By examining how breath features manifest
across these diverse generation methods, we can
identify specific characteristics that differentiate genuine
audio from manipulated content. This extensive analysis
can reveal critical insights into the acoustic signatures
associated with various generation techniques, paving
the way for the integration of breath patterns as a
feature in audio classification models. Such
advancements hold the potential to significantly enhance
the effectiveness of deepfake audio detection systems,
contributing to the development of more robust and
reliable tools for identifying manipulated audio content

II. METHODOLOGY

In this study, we seek to investigate the statistical
properties of breath features in authentic and
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manipulated audio recordings across diverse datasets,
with a primary focus on exploring their potential utility
in developing a robust classifier for detecting audio
deepfakes. By analyzing the acoustic characteristics of
breathing patterns in real and fake audio samples, we
aim to identify distinct statistical patterns and anomalies
that can be leveraged to distinguish between genuine
and synthesized speech.
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Fig 1: Methodology Diagram

3.1) Feature extraction & Statistical Analysis of
Breath
features

Here we aim to perform statistical study of how does
breath as a feature is distributed in Fake and Real audio
in these 10 datasets

Table 1 : Datasets used in study and their characteristics

Dataset Characteristics

FA-1,FA-2,FA- | Consists of 3.5 hours of spoken data
3 collected from Frontier Al labs. With
length of each audio file ranging from 15
to 20 seconds.

ASV Spoof Consists of data samples from ASV spoof
2021 LA evaluation set primarily target to deal
with spoofing attacks.

Predominantly length is less than 3
seconds
In the wild Is a dataset capturing audio deepfakes

from real-world scenarios with diverse
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and uncontrolled environments. Audio
files have an average length of 7 seconds

Every Breath Consists of real audio samples of
you do not Journalist reading articles and generated
take audio where a TTS system is used to
generate the same spoken content.

Half Truth Is a multilingual in bot English and
Chinese dataset aimed to study

characteristics of partially fake audio

Fake or Real Consists 2 second clips of utterances of

real humans and audio generated from

TTS systems .

Deepvoice Data consists of Fake audio samples that
has been using generated using Retrieval
based voice conversion process.

Wavefake Combines generated audio data from

multiple deepfake models like Melgan,
Wavegan etc.
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Fig 2: Pipeline to generate features

Here we extract 3 features from audio that is “Average
breaths per minute”, “Average duration of breathes” and
“Average spacing between breaths”. and study their
characteristics as mentioned in Fig 1

Table 2: Parameters for feature extraction as taken
from Every Breath You Do Not Take

Parameter Definition Value

Window Length Duration of audio segment that is 0.02s
analyzed at a time

Hop Length Amount of time Analysis window is 0.0025s
shifted forward

Threshold ZCR Minimum zero-crossing rate for 0.1
significance.

Threshold RMSE Minimum Root Mean Square Energy 0.1
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Description of features and their measures
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Average breaths per minute: This feature
represents the estimated number of breaths
taken per minute in the audio sample. It is
calculated by counting the number of detected
breath segments and normalizing over the total
duration of the audio file in minutes.

Nb=Number of detected Breaths, T=Total
Duration of audio

ABPM = 6o

2.

[ac
ADB = — D,
J"V{f Z

3.

T

Average duration of breathes: This feature
indicates the average length of each breath,
measured in seconds. It is computed by
determining the duration of each breath
segment, then averaging these durations.
(seconds)

Nd=Number of detected Breath duration,
D=Duration of each detected breath in seconds

1=1

Average Spacing between breathes: This
feature measures the average time interval
between successive breaths. After each breath's
end, the time until the start of the next breath is
calculated, and the mean of these intervals is
taken. (seconds)

Ni=Number of intervals between detected
breaths

[j=Time interval between detected breaths

N;
. 1

Distribution of avg_breaths_per_min
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Fig 3: Distribution of “Average breath per minute” for
Real audio samples
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Fig 4: Distribution of “Average breath per minute” for
Fake audio samples
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Fig 5: Distribution of “Average duration of breath” for
Real audio samples
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Fig 6: Distribution of “Average duration of breaths” for
Fake audio samples
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Fig 7: Distribution of “Average Spacing between breaths”
for Real audio samples
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Figures 3-8 shows the histogram of distribution of =
Breath features for fake and real audio from the entire
dataset.
MANN WHITENY U TEST: is a nonparametric test
used to compare differences between two independent
samples, especially when the sample distributions are
not normally distributed. Mann Whitney U being a non-
parametric test that does not assume a specific I Fig 10: Di
s ig 10: Dis

distribution of data. The test ranks all the data points
from both groups and compares the ranks, which can
provide insights into the differences in distributions Distibution of avg_spacing_between breaths for fake and Real Aucio
without making strong assumptions about the
underlying data. We apply this technique to study how
the underlying distribution of breath features differ in
the 10 datasets taken for study. The study is done for 75
Samples of Fake and Real class.

Null Hypothesis (H0): There is no significant difference
in the breath features (average breaths per minute,

average duration of breaths, and average spacing s . u
between breaths) between fake and real audio samples.

60 100 120
avg_spacing_between_breaths

Alternative Hypothesis (H1) : There is a significant ~ Fig11: Distribution of Avg Spacing Between_breaths
difference in the breath features between fake and real ~ for Fake and Real audio

audio samples.
SUMMARY TABLE

p-value < 0.05: This indicates that there is strong
evidence against the null hypothesis, leading to its
rejection in favor of the alternative hypothesis.

Table 3: Result of Statistical analysis

ni(ng +1)

e 5
- X Reject Hy ifp<U
U7y = Ry — ”3(”‘;) Fail toreject Hy ifp>U
- B 2
U= mmlbj ! Lllz) Datase Average Average Average Overall
. . t breathe duration of spacing assessmen
R1: is the sum of the ranks for the first group. per breaths between t
R2: is the sum of the ranks for the second group. minute breaths
nl: is the number of observations in the first group. FAI-1 No No Significant 33%
o : : significant Significant difference
n2: is the number of observations in the second group. difteronce Jifference
FAI-2 Signifi No Significant 66%
cant Significant difference
difference difference
FAI-3 No Significant Significant 66%
Significant difference difference
difference
ASVSpoof20 Signifi No No 33%
cant Significant Significant
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21 difference difference difference
In the wild Signifi Significant No 66%
cant difference significant
difference difference
Every Signifi Significant Significant 100%
breathe you cant difference difference
do not take difference
Half truth Signifi No No 33%
cant Significant significant
difference difference difference
Fake or No Significant No 33%
Real Significant difference significant
difference difference
Deep voice No No No 0%
Significant Significant Significant
difference difference difference
Wavefake Significant No Significant 66%
difference Significant difference
difference

2) Classification with Statistical Algorithms

The results of Table 2 and Figures 9-11 shows the
potential discriminative ability of breath features across
multiple datasets which can be inferred by the difference
in their respective distributions in Fake and Real audio.
In this study, we evaluate the efficacy of three breath
features—Average Breaths Per Minute, Average
Duration of Breaths, and Average Spacing Between
Breaths—in classifying audio samples as "Fake" or
"Real." by training statistical Machine learning models
with the breath features in isolation.

The present study focuses on the FA-1, FA-2, and FA-3
datasets, as our preliminary analysis and existing
literature, such as [14], suggest that the duration of
audio recordings has a significant impact on the
extracted breath features and subsequent results.
Specifically, the length of audio samples can influence
the accuracy and reliability of breath feature extraction,
which in turn affects the performance of machine
learning models. To mitigate this potential source of
variability and ensure a more controlled environment
for our experiments, we have deliberately selected these
datasets, which provide a suitable range of audio lengths
and characteristics.

Table 4: C(Classification with Statistical Machine
learning and breath features

Model Accuracy EERin ‘in the
wild’

Logistic Regression 72% 84%

Random Forest 71% 90%

SVM RBF 72% 80%

KNN 71% 90%

Naive Bayes 67% 84%
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The trained model is subsequently validated against a
diverse "in the wild" dataset, which comprises a wide
range of audio recordings from various sources and
environments, to assess its generalizability and
robustness in real-world scenarios.

Our findings from table 3 suggest that while the selected
breath features are effective in capturing the distribution
of the training data when trained in isolation, they
exhibit limitations in generalization when applied to
audio files generated by alternative methods as inferred
by the high Equal Error Rates when generalizing on
unseen “in the wild” dataset.

3) Classification with Audio Integrity Net

Further, we improve the classifier by incorporating a
Convolutional Neural Network (CNN) architecture for
detecting audio deepfakes, leveraging stacked features
such as Mel Frequency Cepstral Coefficients (MFCC),
Log-Spectrograms, and a binary breath sequence.

MFCC

200

ence of Breath (1 = Yes, 0 = No)

Fig 12: MFCC, LogSpec and Breath for Real Audio file, for
a particular spoken sentence

MFCC

200

—200

— Breath Feature

= L

ence of Breath (1 = Yes, 0 = No)

o 100 200 300 400 500

Fig 13: MFCC, LogSpec and Breath for Fake audio file, for
the same spoken sentence as Fig 12

We employ MFCCs to extract the short-term power
spectrum of sound and characterize human speech in
both real and synthetic audio. Additionally, we utilize
log-spectral features to analyze the frequency spectrum
of audio signals over time, facilitating the identification
of anomalies. The intersection of root-mean-square
(RMS) and zero-crossing rate (ZCR) features, which
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correspond to breath patterns, enables the detection of
anomalies within the signal and aids in classifying
incoming signals as either real or fake as represented in
Fig 12 & 13. Furthermore, the fusion of these features
enhances the generalizability of our approach.

Our proposed AudiolntegrityNet model is trained on the
same FA-1, FA-2, FA-3 datasets. Following training, the
AudiolntegrityNet model is then validated against a
diverse "in the wild" dataset to asses it's generalizability.

Input
144x500x1  Conv2D
142x498x32

MaxPool
71x249x32 Conv2D
69x247x64

MaxPool Flatt
34x123x64 latten Dense
267648 e output

Fig 14 : Audio Integrity Net Architecture

The proposed CNN architecture as described in Fig 14,
AudiolntegrityNet [22], is designed to effectively detect
audio deepfakes by leveraging a series of convolutional
and pooling layers for feature extraction, followed by
dense layers for classification.

The model begins with an initial convolutional layer to
capture essential audio features, followed by max
pooling and dropout layers to reduce dimensionality and
mitigate overfitting. This is succeeded by a second
convolutional layer that further refines the feature
representation. The output is flattened and processed
through a dense layer, culminating in a final output layer
that employs softmax activation to classify audio
samples as either real or deepfake. The model is trained
using categorical cross entropy as the loss function.

IV. RESULTS

Table 5: Performance metrics of AudiolntegrityNet

Model Evaluation Metrics for Results

AudiolntegrityNet

Training accuracy 92%

Validation Accuracy 82%

Precision 87%

Recall 74%

F1 Score 79%

AUC 90%

ISSN: 2395-1303

ROC Curve

True Positive Rats

o 0.2 0.4 06 0.8 1

False Positive Rate

Fig 15: ROC curve and AUC

Table 6 : Equal Error Rate of AudiolntegrityNet on
different datasets

Dataset Equal Error Rate (%)
In The Wild (>4 seconds) 32.50
Every Breath you Do not Take 18.75
DeepVoice 25.00
WaveFake full band melgan 26.09
Validation set 11.79

https://ijetjournal.org/

Our AudiolntegrityNet [22] exhibits strong performance
as a classifier when evaluated on our validation set, as
illustrated in Table 5. The model achieves an impressive
overall Area Under the Curve (AUC) score of 90%,
indicating its robust classification capability and
suggesting that it can effectively distinguish between
genuine and manipulated audio. Furthermore, when
independently validated against the "In the Wild" dataset,
the model attains an Equal Error Rate (EER) of 32.50%
(refer to Table 6), showcasing its reliability in real-world
scenarios. Notably, the model performs even better on
the "Every Breath You Do Not Take" dataset, achieving
an EER of 18.75%.

These results underscore the competitive performance
of AudiolntegrityNet in the realm of audio deepfake
detection. When compared to existing models, such as
the Mesolnception model, which reports an EER of
37.4% on the "In the Wild" dataset, and RawNet2, which
achieves an EER of 33.94% on the same dataset [20], our
model demonstrates a measurable improvement. This
advancement not only highlights the effectiveness of our
approach, but also positions AudiolntegrityNet as a
valuable tool for enhancing audio integrity verification in
various applications.

V. CONCLUSION

In conclusion, our study provides evidence of a
significant difference in the distribution of Root Mean
Square (RMS) and Zero-Crossing Rate (ZCR) when
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crossing a set threshold value between real and
synthetic audio samples as inferred from the variation in
their respective data distribution. We also infer that
these features give the best results when trained in
conjunction with other short term spectral features. The
performance of our model, AudiolntegrityNet, which was
trained on Mel-Frequency Cepstral Coefficients (MFCC),
log spectrograms, and breath features, demonstrates its
capability to effectively classify audio as real or fake.
Achieving an Equal Error Rate (EER) of 32.50% during
independent validation against an "in-the-wild" dataset.
The study underscores the model's robustness and
potential applicability in real-world scenarios. These
findings contribute to the ongoing efforts in audio
forensics and integrity verification, paving the way for
future research aimed at enhancing the detection of
audio deepfakes.

VI. SCOPES OF FURTHER RESEARCH

There remains significant areas for further research into
the intersection of Root Mean Square (RMS) and Zero-
Crossing Rate (ZCR) across various threshold values.
Future studies should investigate how these
distributions are influenced by diverse factors, including
the nature of the language—as well as the impact of
background noise on these metrics. Additionally, it is
essential to explore how demographic characteristics,
such as gender and age, affect RMS and ZCR values.
Furthermore, examining the influence of respiratory
conditions on these features could provide valuable
insights into the nuances of audio deepfake detection.
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