Submit your paper : editorIJETjournal@gmail.com Paper Title : Spotting Skin Cancer using CNN ISSN : 2395-1303 Year of Publication : 2022 10.5281/zenodo.7335336 MLA Style: -P.Harsha,Garipelly Sahruthi, Anampally Vaishnavi, Pokala Varshini Spotting Skin Cancer using CNN , Volume 8 - Issue 6 November - December 2022 International Journal of Engineering and Techniques (IJET) ,ISSN:2395-1303 , www.ijetjournal.org APA Style: -P.Harsha,Garipelly Sahruthi, Anampally Vaishnavi, Pokala Varshini Spotting Skin Cancer using CNN , Volume 8 - Issue 6 November - December 2022 International Journal of Engineering and Techniques (IJET) ,ISSN:2395-1303 , www.ijetjournal.org Abstract The development of machine learning has changed many aspects of our life, including how we detect skin malignancies. The most grave kind of skin disease is melanoma, a sort of skin cancer. Medical specialists can treat it, but doing so requires skill and experience. The cancer's stage and the patient's current health condition will determine how the patient is treated. Therefore, SKIN CANCER SPOTTING USING CNN is introduced in order to quickly detect these forms of skin tumours. Modern medical image processing techniques examine images obtained from the skin and images captured under a microscope using a variety of algorithms. The lamination of the excavated structures is done using a Convolutional Neural Network classifier namely based on deep learning. We are experts in convolutional neural networks and have achieved 99.8% prediction accuracy. Reference 1. Sara Medhat, Hala Abdel-Galil, Amal Elsayed, Hassan Saleh, Skin cancer diagnosis using convolutional neural networks for smartphone images: A comparative study, Journal of Radiation Research and Applied Sciences, Volume 15, Issue 1, 2022, Pages 262-267, ISSN 1687-8507,https://doi.org/10.1016/j.jrras.2022.03.008 2. Abbas Q, Emre Celebi M, Garcia IF, Ahmad W. Melanoma recognition framework based on the expert definition of ABCD for dermoscopic images. Skin Res Technol.2013 Feb;19(1):e93-102. doi: 10.1111/j.1600-0846.2012.00614.x.Epub 2012 Jun 7.PMID: 22672769. 3. Barata, Catarina &Ruela, Margarida & Francisco, Mariana & Marques, Jorge &Mendonça, Teresa. (2013). Two Systems for the Detection of Melanomas in Dermoscopy Images Using Texture and Color Features. IEEE Systems Journal. 8. 10.1109/JSYST.2013.2271540. 4. Hasan, Mahamudul& Barman, Surajit& Islam, Samia& Reza, Ahmed Wasif. (2019). Skin Cancer Detection Using Convolutional Neural Network. 254-258. 10.1145/3330482.3330525. 5. M. Ramachandra, T. Daniya and B. Saritha, "Skin Cancer Detection Using Machine Learning Algorithms," 2021 Innovations in Power and Advanced Computing Technologies (i-PACT), 2021, pp. 1-7, DOI: 10.1109/i-PACT52855.2021.9696874. 6. Pushpalatha, A & Dharani, P &Dharini, R &Gowsalya, J. (2021). Skin Cancer Classification Detection using CNN and SVM. Journal of Physics: Conference Series. 1916. 012148. 10.1088/1742-6596/1916/1/012148. 7. Brinker TJ, Hekler A, Utikal JS, Grabe N, Schadendorf D, Klode J, Berking C, Steeb T, Enk AH, von Kalle C. Skin Cancer Classification Using Convolutional Neural Networks: Systematic Review. J Med Internet Res. 2018 Oct 17;20(10):e11936. DOI: 10.2196/11936. PMID: 30333097; PMCID: PMC6231861 8. Mousannif, Hajar & Asri, Hiba & Mansoura, Mohamed &Mourahhib, Anas &Marmouchi, Mouad. (2021). Skin Cancer Prediction and Diagnosis Using Convolutional Neural Network (CNN) Deep Learning Algorithm. 10.1007/978-3-030-66840-2_42. 9. R. R. Subramanian, D. Achuth, P. S. Kumar, K. Naveen Kumar Reddy, S. Amara, and A. S. Chowdary, "Skin cancer classification using Convolutional neural networks," 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence),2021, pp.13-19, DOI: 10.1109/Confluence51648.2021.9377155. Keywords — Data augmentation, Convolutional neural network, Melanoma, malignant, benign, dataset visualization, optimizer, rel-U, Hyperparameter, Convolutional layer |