Submit your paper : editorIJETjournal@gmail.com Paper Title : Generalization of Banach, Goebel and Kirk Fixed Point Theorems ISSN : 2395-1303 Year of Publication : 2022 10.5281/zenodo.7438353 MLA Style: - Kalyan V. A, and Dolhare U. P Generalization of Banach, Goebel and Kirk Fixed Point Theorems , Volume 8 - Issue 6 November - December 2022 International Journal of Engineering and Techniques (IJET) ,ISSN:2395-1303 , www.ijetjournal.org APA Style: - Kalyan V. A, and Dolhare U. P Generalization of Banach, Goebel and Kirk Fixed Point Theorems , Volume 8 - Issue 6 November - December 2022 International Journal of Engineering and Techniques (IJET) ,ISSN:2395-1303 , www.ijetjournal.org Abstract The Banach contraction principle [1] is the first important result on fixed points for contractive type mappings. In 1969 Kannan [9], in 1972 Chatterjee [4] and in 2001 Rhoades B. E. [13] gave some interesting results on fixed points. Boyd and Wong [2] obtained more general fixed point theorem by replacing the decreasing function in the theorem of Rakotch [14] and it was further generalized by Nalawade and Dolhare U. P. [12]. In this paper our aim is to discuss about fixed point theory. We have also established fixed point theorem in complete Metric Space, which is a new generalized result in fixed point theory. Reference 1. Banach, S, “Sur les operations dans les ensembles abstraits et leur application aux equations integrals”, Fundamenta Mathematicae, vol. 3, pp 133-181, 1922. 2. Boyd, D. W. and Wong, J. S., “On nonlinear contractions”, Proceedings of the American Mathematical Society, vol. 20(2), pp 458-464, 1969. 3. Caccioppoli, “Untheorem a generale bull existence di-element unitiunatrans functional”, Ahi Acad. NaLincei, vol. 6(11), pp 794-809, 1930. 4. Chatterjee, S. K., “Fixed point theorems”, C. R. Acad. Bulgare Sci., vol. 25, pp 727-730, 1972. 5. Ciric, L. B., “Generalized contractions and fixed point theorems”, Publications De L’Institut Mathematique Nouvelle Serie tome, vol 12(26), pp19-26, 1971. 6. Dutta, P. N. and Choudhury, B. S., “A generalisation of contraction principlein metric spaces”, Fixed Point Theory Appl., pp 6-12, 2008. 7. Edelstein, M., “On fixed and periodic points under contraction mappings”, Journal of London Mathematical Society, vol. 37, pp 7479, 1962. 8. Goebel, K. and Kirk, W. A., “Topics in metric fixed point theory”, Cambridge University Press Cambridge, 1990. 9. Kannan, R., “Some results on fixed points-II”, American Mathematical Monthly, vol. 76(4), pp 405-408, 1969. 10. Kannan, R., “Some results on fixed points-III”, Bull. Calcutta Math. Soc., pp 169-177, 1969. 11. Khan, M. S., Swaleh, M. and Sessa, S., “Fixed point theorems by altering distances between the points”, Bulletin of Australian Mathematical Soc., vol. 30, pp 1-9, 1984. 12. Nalawade V. V. and Dolhare U. P., “Importance of fixed points in mathematics”, International Journal of Applied and Pure Science and Agriculture”, vol. 2 (12), pp 131-140, Dec. 2016. 13. Rhoades, B. E., “Some theorems on weakly contractive maps”, Non-linear Analysis TMA, vol. 47, No. 4, pp 2683-2693, 2001. 14. Rakotch, E., “A note on contractive mappings”, Proceedings of American Mathematical Society, vol. 13, pp 459-465, 1962. 15. Singh, S. P., “Some theorems on fixed points”, Yokohama Math. Journal, vol. 18, pp 23-25, 1970. 16. Skof, F., “Teorema di punti fisso per applicazioni negli spazi metrici”, Atti. Acad. Sci. Torino, 111, pp 323-329, 1977. Keywords — Fixed point, Fixed point theorem, Contraction mapping, Weakly contraction mapping. |