Submit your paper : editorIJETjournal@gmail.com Paper Title : GENERALIZED STUDY OF UNIQUE FIXED POINTS AND COMMUTING SELFMAPS ISSN : 2395-1303 Year of Publication : 2022 10.5281/zenodo.7464376 MLA Style: - Dolhare U. P. , Kalyan V. A. GENERALIZED STUDY OF UNIQUE FIXED POINTS AND COMMUTING SELFMAPS " Volume 8 - Issue 1 January - February,2022 International Journal of Engineering and Techniques (IJET) ,ISSN:2395-1303 , www.ijetjournal.org APA Style: - Dolhare U. P. , Kalyan V. A. " GENERALIZED STUDY OF UNIQUE FIXED POINTS AND COMMUTING SELFMAPS " Volume 8 - Issue 1 January - February,2022 International Journal of Engineering and Techniques (IJET) ,ISSN:2395-1303 , www.ijetjournal.org Abstract Some common fixed point theorems related to complete and compact metric space are proved in the present paper. Which includes the fixed point theorems given by B. E. Rhoades [31] , G. Jungck [21], G. Das et al. [9], and U. P. Dolhare [ 12, 13, 14, 15 ]. Fixed points for selfmappings, in complete metric spaces, are obtained by using weakly commuting pairs and commuting mappings. We have extended and generalized the results obtained by K. Goebel and W. A. Kirk and proved fixed point theorems for selfmaps. Fixed point theorems for selfmappings satisfying weakly contractive conditions, involving altering distance, in complete metric space are also studied. Reference 1. Alghamdi, M. A., Radenovic, S., Shahzad, N., “On some generalizations of commuting mappings,” Abstract and Applied Analysis, vol. 2012, Article ID 952052, 6 pages. 2. Banach, S, “Sur les operations dans les ensembles abstraits et leur application aux equations integrals”, Fundamenta Mathematicae, vol. 3, pp 133-181, 1922. 3. Boyd, D. W. and Wong, J. S., “On nonlinear contractions”, Proceedings of the American Mathematical Society, vol. 20(2), pp 458-464, 1969. 4. Browder, F. E., “Nonlinear operators and nonlinear equations of evolution in Banach spaces,” Proc. of Symposia in Pure Mathematics, vol. 18, part-2, 1976. 5. Caccioppoli, “Untheorem a generale bull existence di-element unitiunatrans functional”, Ahi Acad. NaLincei, vol. 6(11), pp 794-809, 1930. 6. Cheng Chan Chang, “On a fixed point theorem of contractive type”, Comment. Math. Univ. St. Paul, 32, pp 15-19, 1983. 7. Ciric, L. B., “Generalized contractions and fixed point theorems,” Publications De L’Institut Mathematique Nouvelle Serie tome, 12 (26), pp 19-26, 1971. 8. Ciric, Lj. B., “A generalization of Banach’s contraction principle,” Proc. Amer. Math. Soc., vol. 45, pp 267-273, 1974. 9. Das, G. and Dabata, J. P., “A note on fixed points of commuting mappings of contractive type,” Indian J. Math., 27, pp 49-51, 1985. 10. Dass, B. K. and Gupta S., “An extension of Banach contraction principle through rational expression,” Indian Journal of Pure and Applied Math, vol. 6, pp1455-1458. 11. Dhage, B. C., Dolhare, U. P., and Rhoades, B. E., “Some common fixed point theorems for sequences of nonself multivalued operations in metrically convex D-Metric Spaces,” Math. Fixed point theory , International Journal, vol. 4, no. 2, pp 132-158, 2003. 12. Dolhare, U. P., “Generalization of selfmaps and contraction mapping principle in D-Metric Space,” International Journal of Applied and Pure Science and Agriculture, vol 2, pp 17-21, 2016. 13. Dolhare, U. P., “Nonlinear selfmapping and some fixed point theorem in D-metric spaces,” Bulettin of M.M.S., vol. 8, pp 23-26. 14. Dolhare, U. P. and Bele, C. D., “Common fixed point in complete metrix space,” Weekly Science international Research Journal, vol. 3 , pp 1-6, 2016. 15. Dolhare, U. P. and Parwe, S. P., “ Unique fixed point theorems in complete metric space,” Weekly Science International Research Journal, vol. 4, issue 52, 2016. 16. Edelstein, M., “On fixed and periodic points under contraction mappings,” Journal of London Math. Soc., vol. 37, pp 74-79, 1962. 17. Gairola, U. C. and Ram Krishan, “Common fixed point theorem for three maps by altering distances between the points,” IJMA, vol. 4, no. 1, pp 143-151, 2013. 18. Goebel, K. and Kirk, W. A., “Topics in metric fixed point theory,” Cambridge University Press Cambridge, 1990. 19. Istratescu, V. I., “ Fixed point theory, ” D. Riedel publishing Co. London, 1981. 20. Jaggi D. S., “Some unique fixed point theorems”. 21. Jungck, G., “ Commuting mappings and fixed points,” The Amer. Mathematical monthly, vol. 83, no. 4, pp 261-263, 1976. 22. Jungck, G., “Compatible mapping and common fixed points,” Int. J. Indian Math and Math Sci, vol. 9, pp. 771-779, 1986. 23. Jungck, G. and Rhoades, B. E., “Fixed point for set valued function without continuity”, ol. 29, no. 3, pp 381-386, 1998. 24. Kannan, R., “Some results on fixed points,” Bull. Calcutta Math. Soc., vol. 60, pp 71-78, 1968. 25. Khan, M. S., Swaleh, M. and Sessa, S., “Fixed point theorems by altering distances between the points,” Bulletin of Australian Mathematical Society, vol. 30, pp 1-9, 1984. 26. Meir, A. and Keeler, E., “A theorem on contraction Mappings,” Journal of Mathematical Analysis and Applications, vol. 28, pp 326-329, 1969. 27. Meszaros, J., “A comparison of various definition of contractive type mappings,” Bull. Cal. Math. Soc., vol. 84, pp 197-194, 1992. 28. Naidu S. V. R., “ Some fixed point theorems in Metric space by altering distances,” Mathematical Journal, vol. 53, no.1, pp 205-212, 2003. 29. Pant, R. P., “Common fixed point of two points of commuting mappings,” Indian Journal of Pure and Appl. Math., vol. 17, pp 187-192, 1986. 30. Patil, S. and Dolhare U. P., “A Note on Development of Metric fixed point Theory,” International Journal of Advanced Research Research, vol. 4, no. 8, issue 31, 2016. 31. Rhoades, B. E., “Some theorems on weakly contractive maps,” Non-linear Analysis TMA, vol. 47, no. 4, pp 2683-2693, 2001. 32. Sastry, K. P. R. and Babu, G. V. R., “ Some fixed point theorems by altering distances between the points,” Indian J. Pure Appl. Math., 30, pp 641-647, 1999. 33. Shih-Sen Chang, “A common fixed point theorem for commuting mappings,” Proc. Amer. Math. Soc., vol. 83, pp 645-652, 1981. 34. Singh and Dimri, R. C., “A common fixed point through generalized altering distance functions,” Kochi Journal of Mathematics, vol. 6, pp 149-157, 2011. Keywords - Weakly commuting selfmaps, Complete metric space, Fixed points, Fixed point theorem. |