RESTRAINED EDGE DOMINATION ON S- VALUED GRAPHS

DR.S.MANGALA LAVANYA, ASSISTANT PROFESSOR

THE STANDARD FIREWORKS RAJARATNAM COLLEGE FOR WOMEN SIVAKASI-626123. TAMILNADU.INDIA.

meetlavan78@gmail.com

ABSTRACT. In this paper, we introduce the notion of restrained edge domination on S- valued graphs and study some properties.

AMS Classification: 05C25,16Y60

Keywords: Semirings, Graphs, S- valued graphs, restrained Weight Dominating edge set.

1. Introduction

In [6], the authors introduced the notion of S- valued graphs, where S is a semiring. In graph theory, domination of graphs is the most powerful area of research for, it has several applications in other areas of sciences. It was initiated by Berge [1]. In [7], the authors have studied the edge domination on S- valued graphs. In this paper we discuss the notion of restrained edge domination on S- valued graphs.

2. Preliminaries

In this section we recall some basic definitions that are needed for our work.

Definition 2.1. [4] A semiring $(S, +, \cdot)$ is an algebraic system with a non-empty set S together with two binary operations + and \cdot such that

- (1) (S, +, 0) is a monoid.
- (2) (S, \cdot) is a semigroup.

ISSN: 2395-1303

- (3) For all $a, b, c \in S$, $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(a+b) \cdot c = a \cdot c + b \cdot c$.
- (4) $0 \cdot x = x \cdot 0 = 0 \ \forall \ x \in S$.

Definition 2.2. [4] Let $(S, +, \cdot)$ be a semiring. \leq is said to be a Canonical Preorder if for $a, b \in S$, $a \leq b$ if and only if there exists an element $c \in S$ such that a + c = b.

1

DR.S.MANGALA LAVANYA, ASSISTANT PROFESSOR

Definition 2.3. [6] Let $G = (V, E \subset V \times V)$ be a given graph with $V, E \neq \phi$. For any semiring $(S, +, \cdot)$, a semiring-valued graph (or a S-valued graph), G^S , is defined to be the graph $G^S = (V, E, \sigma, \psi)$ where $\sigma : V \to S$ and $\psi : E \to S$ are defined to be

$$\psi(x,y) = \left\{ \begin{array}{cc} \min\left\{\sigma(x),\sigma(y)\right\} & if \ \sigma(x) \preceq \sigma(y) \ or \ \sigma(y) \preceq \sigma(x) \\ 0 & otherwise \end{array} \right.$$

for every unordered pair (x,y) of $E \subset V \times V$. We call σ , a S-vertex set and ψ , a S-edge set of S-valued graph G^S .

Definition 2.4. [7] An edge e in G^S is said to be a weight dominating edge if $\psi(e_i) \leq \psi(e) \ \forall e_i \in N_S[e]$.

Definition 2.5. [7] A subset $D \subseteq E$ is said to be a weight dominating edge set if for each $e \in D$, $\psi(e_i) \preceq \psi(e)$, $\forall e_i \in N_S[e]$.

Definition 2.6. [3] A set $S \subseteq E$ is a restrained dominating set if every edge E - S is incident to an edge in S and another edge in E - S.

Definition 2.7. [7] A set $M \subseteq E$ is an independent edge set of G^S if $f, g \in E$ such that $N_S(f) \cap (g, \psi(g)) = \phi$.

Definition 2.8. [7] A subset $M \subseteq E$ is said to be a maximal independent edge set if

(1) M is an independent edge set.

2

(2) If there is no subset M' of E such that $M \subset M' \subset E$ and M' is an independent edge set.

3. Restrained Edgs Domination on S- Valued Graphs

In this section, we introduce the notion of restrained edge domination on S- valued graph, analogous to the notion in crisp graph theory, and prove some simple results.

Definition 3.1. Consider the S- valued graph $G^S=(V,E,\sigma,\psi)$. A subset $D\subseteq E$ is said to be a restrained weight dominating edge set if

- (1) D is a weight dominating edge set.
- (2) For each $e \in E D$ is dominated by an edge in D and also by an edge in E D.

Example 3.2. Let $(S = \{0, a, b, c\}, +, \cdot)$ be a semiring with the following Cayley Tables:

+	0	a	b	c
0	0	a	b	c
a	a	a	a	a
b	b	a	b	b
c	c	a	b	c

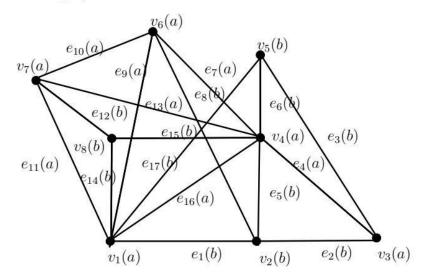
	0	a	b	c
0	0	0	0	0
a	0	a	a	a
b	0	b	b	b
c	0	b	b	b

ISSN: 2395-1303 httr

RESTRAINED EDGE DOMINATION ON S- VALUED GRAPHS

Let \leq be a canonical pre-order in S, given by

 $0 \leq 0, \ 0 \leq a, \ 0 \leq b, \ 0 \leq c, \ a \leq a, \ b \leq b, \ b \leq a, \ c \leq c, \ c \leq a, \ c \leq b$ Consider the S- graph G^S :



Define $\sigma: V \to S$ by

$$\sigma(v_1) = \sigma(v_3) = \sigma(v_4) = \sigma(v_6) = \sigma(v_7) = a, \\ \sigma(v_2) = \sigma(v_5) = \sigma(v_8) = b \\ \text{and } \psi : E \to S \text{ by} \\ \psi(e_1) = \psi(e_2) = \psi(e_3) = \psi(e_5) = \psi(e_6) = \psi(e_8) = \psi(e_{12}) = \psi(e_{14}) = b; \\ \psi(e_{15}) = \psi(e_{17}) = b; \\ \psi(e_4) = \psi(e_7) = \psi(e_9) = \psi(e_{10}) = \psi(e_{11}) = \psi(e_{13}) = \psi(e_{16}) = a \\ \text{Clearly } D = \{e_4, e_7, e_9, e_{10}, e_{11}, e_{13}, e_{16}\} \text{ is a restrained weight dominating edge set.} \\ \text{Further } D_1 = \{e_4, e_7, e_9, e_{13}, e_{16}\}, D_2 = \{e_7, e_9, e_{10}, e_{11}, e_{13}, e_{16}\}, \\ D_3 = \{e_4, e_7e_{10}, e_{11}, e_{16}\}, D_4 = \{e_4, e_{10}, e_{16}\}, D_5 = \{e_4, e_9, e_{10}\} \text{ are all restrained weight dominating edge sets.}$$

Definition 3.3. A subset $D \subseteq E$ is said to be a minimal restrained weight dominating edge set if

- (1) D is a restrained weight dominating edge set.
- (2) No proper subset of D is a restrained weight dominating edge set.

In example 3.2, $D_4 = \{e_4, e_{10}, e_{16}\}$ and $D_5 = \{e_4, e_9, e_{10}\}$ are minimal restrained weight dominating edge set.

Definition 3.4. The restrained edge domination number of G^S denoted by $\gamma_{RE}^S(G^S)$ is defined by $\gamma_{RE}^S(G^S) = (|D|_S, |D|)$, where D is the minimal restrained weight dominating edge set.

In example 3.2, $D_4 = \{e_4, e_{10}, e_{16}\}$ is a minimal restrained weight dominating edge set.

$$\gamma_{RE}^S(G^S) = (|D_4|_S, |D_4|) = (|D_5|_S, |D_5|) = (a, 3)$$

ISSN: 2395-1303 http://www.ijetjournal.org

3

DR.S.MANGALA LAVANYA, ASSISTANT PROFESSOR

Definition 3.5. A subset $D \subseteq E$ is said to be a maximal restrained weight dominating edge set if

(1) D is a restrained weight dominating edge set.

4

(2) If there is no subset D' of E such that $D \subset D' \subset E$ and D' is a restrained weight dominating edge set.

In example $3.2, D = \{e_4, e_7, e_9, e_{10}, e_{11}, e_{13}, e_{16}\}$ is a maximal restrained weight dominating edge set.

Definition 3.6. A subset $M \subseteq E$ is said to be an independent restrained weight dominating edge set if M is both independent edge set and a restrained weight dominating edge set.

In example 3.2, $D_5 = \{e_4, e_9, e_{10}\}$ is an independent restrained weight dominating edge set.

Theorem 3.7. A restrained weight dominating edge set D of a graph G^S is a minimal restrained weight dominating edge set of G iff every edge $e \in D$ satisfies at least one of the following properties:

- (1) there exist an edge $f \in E D$, such that $N_S(f) \cap (D \times S) = \{(e, \psi(e))\}$
- (2) e is adjacent to no edge of D.

Proof: Let $e \in D$. Assume that e is adjacent to no edge of D, then $D - \{e\}$ cannot be a restrained weight dominating edge set. $\Rightarrow D$ is a minimal restrained weight dominating edge set.

On the other hand, if for any $e \in D$ there exist a, $f \in E - D$ such that $N_S(f) \cap (D \times S) = \{(e, \psi(e))\}$

Then f is incident to $e \in D$ and no other edge of D.

In this case also, $D - \{e\}$ cannot be a restrained weight dominating edge set of G^S . Hence D is a minimal restrained weight dominating edge set.

Conversely, assume that D is a minimal restrained weight dominating edge set of G^S .

Then for each $e \in D$, $D - \{e\}$ is not a restrained weight dominating edge set of G^S .

: there exist an edge, $f \in E - (D - \{e\})$ that is incident to no edge of $(D - \{e\})$. If f = e, then e is incident to no edge of D.

If $f \neq e$ then D is a restrained weight dominating edge set and $f \notin D \Rightarrow f$ is incident to atleast one edge of D. However f is not incident to any edge of $D - \{e\}$.

 $\Rightarrow N_S(f) \cap D \times S = \{(e, \psi(e))\}.$

Theorem 3.8. A set $D \subseteq E$ of G^S is an independent restrained weight dominating edge set iff D is a maximal independent edge set in G^S .

Proof: Clearly every maximal independent edge set D in G^S is an independent restrained weight dominating edge set.

Conversely, assume that D is an independent restrained weight dominating edge set.

5

RESTRAINED EDGE DOMINATION ON S- VALUED GRAPHS

Then D is independent and every edge not in D is incident to an edge of D and therefore D is a maximal independent edge set in G^S .

Theorem 3.9. Every maximal independent edge set of edges D in G^S is a minimal restrained weight dominating edge set.

Proof: Let D be a maximal independent edge set of edges D in G^S . Then by theorem 3.8, D is a restrained weight dominating edge set.

Since D is independent, every edge of D is incident to no edge of D.

Thus, every edge of D satisfies the second condition of theorem 3.7. Hence D is a minimal restrained weight dominating edge set in G^S .

Theorem 3.10. If $D \subseteq E$ is a minimal restrained weight dominating edge set of G^S without S- isolated edges then E-D is also a restrained weight dominating edge set of G^S .

Proof: Let $e \in D$. Then by theorem 3.7,

- (1) there exist an edge $u \in E D$ such that $N_S(u) \cap D = \{e\}$
- (2) e is incident to no edge of D.

In the first case, e is incident to some edge in E-D.

In the second case, e is an S- isolated edge of the subgraph spanned by $\langle D \rangle$.

But e is not S- isolated in G^S .

Hence e is incident to some edge of E - D.

Thus E-D is a restrained weight dominating edge set of G^S .

References

- [1] Berge C: Theory of Graphs and its Applications, Methuen, London, (1962).
- [2] Bondy J A and Murty U S R: Graph Theory with Applications, North Holland, New York (1982).
- [3] Gayla S.Domke, Johannes H.Hattingh, Stephe T.Hedetniemi, Renu C.Laskar, Lisa R.Markus: Restrained domination in graphs, Discrete Mathematics 203(1999)61-69.
- [4] Jonathan Golan: Semirings and Their Applications, Kluwer Academic Publishers, London.
- [5] Mangala Lavanya.S, Kiruthiga Deepa.S and Chandramouleeswaran.M: Degree Regularity on edges of S- valued graph, IOSR - Journal of mathematics., Volume 12, Issue 5, Ver VII (sep-Oct 2016), pp 22-27.
- [6] Rajkumar.M, Jeyalakshmi.S and Chandramouleeswaran.M: Semiring-valued Graphs, International Journal of Math. Sci. and Engg. Appls., Vol. 9 (III), 2015, 141 -152
- [7] Kiruthiga Deepa.S, Mangala Lavanya.S and chandramouleeswaran.M: Edge Domination on S— valued graph, Journal of mathematical and computational Science.,7(2017) No 1, 59-67

ISSN: 2395-1303 http://www.ijetjournal.org Page 5