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Abstract

Quantum cryptography leverages the principles of quantum mechanics to provide
unprecedented security in communication systems. A novel approach to enhancing the
robustness and efficiency of quantum cryptographic protocols involves the application of
geometric transformations. This paper explores the integration of geometric transformations,
specifically unitary transformations, into the quantum key distribution (QKD) process. By
employing such transformations, we aim to optimize the manipulation of quantum states, thereby
improving the resilience of cryptographic keys against potential eavesdropping attacks. The
study investigates the theoretical framework of applying geometric transformations to quantum
states, demonstrating how they can be used to encode, transmit, and decode quantum information
with heightened security. Simulation results indicate that these transformations can significantly
increase the fidelity of transmitted quantum states, reduce error rates, and bolster the overall
security of quantum communication channels. This work lays the foundation for further
exploration of geometric methods in quantum cryptography, potentially leading to more secure
and efficient quantum communication systems.

The goal of this paper is to apply the ideas of quantum dynamics to cryptography, potentially
leading to quantum cryptography. We developed a novel encryption system based on quantum
rotation and spinning operators for digital data. In this straightforward exercise, we create a
matrix using a two-dimensional rotation matrix with real entries. The rotation matrix is further
integrated into the sizeable matrix needed for image encryption. In addition to a rotation matrix
of the necessary size and rotation angle, the benchmark images are used for encryption. The
analysis and results are shown.

https://www.researchgate.net/publication/329664237_Image_privacy_scheme_using_quantum_spinning_and_rotation?enrichId=rgreq-d81e485e8550c9218f741bb5dd3b7763-XXX&enrichSource=Y292ZXJQYWdlOzMyOTY2NDIzNztBUzo3MDYxODc0NTI0ODU2MzJAMTU0NTM3OTYxNzU4NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
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1.0 Introduction

Huge amounts of data are being sent over
unreliable communication lines thanks to the
development of fast computing machines.
Large databases are now used to store and
manage the information of all social media
servers, banks, military institutions, and
other private sectors. Any organization
suffers significant harm when information is
shared via digital media. The world of today
faces a great deal of challenges as a result of
the widespread use of digital technology.
Thus, one of the inevitable problems now is
the security and confidentiality of digital
contents. The modern world is essentially a
continuous digital image era.

These digital materials are very important to
us. Because digital images require high
computational efficiency, their precise
properties, such as redundancy and resilient
connections between adjacent pixels, make
it difficult for outdated conventional
encryption algorithms to handle real-time
enciphering. Various methods have emerged
in the literature to safeguard these digital
images. Certain methods employ chaos
theory to create comprehensive encryption
schemes that include diffusion and
confusion across multiple rounds [27,46].
Additionally, some researchers created
novel and inventive techniques to build a
nonlinear component of block ciphers,
which is undoubtedly the cause of any block
cipher's confusion [14–16].

Classical cryptographic algorithms face a
serious threat from the emerging concept of
quantum computers. The basic idea behind
quantum computing is the transformation of
input information states, represented by a
linear combination of various related inputs,
into outputs that conform to various related
outputs. A circuit made up of quantum gates
that operate on qubits is analogous to a
quantum scheme [5–18].

There have been physical demonstrations of
the qui-bits and the associated entryways in
[24, 26]. Currently, quantum computation is
linked to many areas of science and
innovation, including computational
geometry, quantum games, image
processing, and pattern recognition. The
potential quantum computers will use
mechanical properties like superposition and
entanglement to weaken the conventional
cryptosystem from the ground up. Given
quantum physical properties like the
Heisenberg vulnerability and the no cloning
hypothesis, quantum cryptography schemes
have been thought to be helpful in
mitigating the worst aspects of traditional
cryptosystems [39–43].

Since quantum computers are based on
quantum information theory, brute force
attacks can be carried out on them with
relative ease thanks to technological
advancements in the modern computer
world. This vulnerability presents a risk to
the ideal security needed for both protected
innovation and national security. Using the
fundamental and consistent principles of
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quantum mechanics, quantum cryptography
provides an alternative to depending on the
complex nature of factoring large numbers.
It is predicated on the photon polarization
and the Heisenberg uncertainty standard,
two fundamental ideas in theoretical physics.
It illustrates the various ways in which light
photons can become enraptured. A
captivated photon can only be distinguished
by a photon channel with the appropriate
polarization.

A single photon's path combined with the
Heisenberg uncertainty principle, which
gave rise to quantum cryptography, offers an
enticing substitute for ensuring security and
defeating spies [35–48]. Few particles have
half inner angular momentum, also known
as spin, such as electrons, quarks, and
neutrinos. In order to provide additional
insight into cryptography, we develop a
spinner portrayal for half spin in this paper
using spinning operators of quantum
dynamics. The half spinning operator serves
two purposes: first, it encrypts the keys;

second, it can be used to encode digital
images through the use of this innovative
mechanism. Phase data is the key
component of our scheme; we use it to
encode and decode the picture parameters.

We can use different stages for keys and
messages to achieve the highest level of
security. In order to unscramble the message,
we must first use stage data to decode the
keys, and then we must use the message's
stage data along with the keys to unscramble
the message. Again, if someone were to take
one of the variables—keys, the duration of
the keys, or the message—he should not be
able to decipher the message without being
aware of the other components.

1.1 Mathematical expression for
rotation operators

You can find the detailed derivations of
spinning and rotation in [11–41]. The
following mathematical expression for
rotation operators will be useful when
creating an image encryption technique:
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1.2 Proposed Image Encryption
Scheme

For encryption purposes, defining parameter
to be used in rotation matrices followed by a
global matrix,

)(
0

0)(

2
cos

2
sin

2
sin

2
cos

)(

2
cos

2
sin

2
sin

2
cos

10
01

2

2












cb

a

R
e

edRc

RbIa

































































(4)

� =
�� ∈ �4×4 �, �� � , �� � , �� � | �� ∈ �� �� ,

�� ∈ �4, � = 1,2, …, 24 ���

�� ∈ �2×2(�, �� � , �� � , ��(�)

(5)

We get 24 matrices
 1 2 3 24, , ,..., .M M M M M The image

encryption scheme is defined as follows,

Fig.1. Flow chart for Image encryption

1.2.1 Image Encryption

 After reading an image, convert each
RGB layer to a 4×n order.

 Establish criteria for the encryption
phase that the sender and recipient
are aware of.

 To obtain matrices from the set of
matrices, enter phase in Eq. (5).

 Choose key of any length
 ...a b c d under mod 24 and

take it as regarding matrix / matrices
from set M of Eq. (5).

 Using the chosen rotational matrices,
encrypt every layer of the digital
image.

 Convert the encrypted layers'
dimensions back to their original size.

 Combine all the encrypted layers to
form an encrypted image in RGB.

 We can also choose the following
criteria for encrypting the key:
Assume that the key digits are odd.

http://www.ijetjournal.org


International Journal of Engineering and Techniques - Volume 10 Issue 5, September 2024

ISSN: 2395-1303 http://www.ijetjournal.org Page 5

Then, compute what this equals,
convert to binary, and see if the last
bit is 0. If not, select the matrix to
encrypt the key. If not, select the
matrix to encrypt the key. If the key
digits are even, calculate the value,
which in this case is c. Then, convert
c to binary and see if the last bit is 0.
If not, choose matrices related to
encrypting the key.

1.2.2 Image Decryption

 Read an RGB-encrypted image and
convert it to an ordered format.

 Extract the RGB layers from
encrypted Image.

 Calculate the phase decided by
equation and put in set M of Eq. (5).

 Next, take the corresponding matrix
or matrices from set M and find their
inverse. Extract the original keys
from the encrypted keys.

 Decrypt each layer with inverse
matrix/ matrices.

 Modify the layer dimensions as they
are received in encrypted format.

 Combine all the layers to form an
image as was in original.

1.3 Experimentation of Proposed
Algorithm

The suggested algorithm is used to
encrypt the 512x512 image of "Lena" and
"Fruits," after which different analyses are
carried out (Fig. 2a, 2b).

Choose the image of ’Lena’ and ‘Fruits’
extract its RGB layers and perform analysis.

Select the secret equation to choose the
phase at both sides as:

� = 330� 2� −
1 ���720, �ℎ��� � ∈ 1,24 ��� � =
����(�) (6)

By using this equation, take � = 382.5, as
the described algorithm refers symmetric
cryptography. Therefore, we select different
matrices from set M based on the modulus
operations are: 1414mod  24  A

529mod  24  A , 1159mod  24  A . Now

transform the matrices 14 5 11, ,A A A regarding
dimension of key by appending zeros and
apply calculated phase. The image
encryption with given key as follow (see
Table 1).
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Fig. (3a, 3b). Encrypted Images of Lena and
Fruits

Fig .(2a, 2b). Target Images of Lena and Fruits

1.4 Performance Analysis of
Proposed Algorithm

In order to verify the security and
functionality of the recommended
encryption algorithm, we have
carried out a few tests on common
digital photos. These measures
include an irregularity test for the
encrypted images, a factual
examination, and a sensibility
investigation. The corresponding
subsections provide a detailed
discussion of each of these measures.

1.4.1 Randomness Test for Cipher

A few characteristics, such as long
duration, uniform distribution, high
intricacy, and productivity, are
necessary for the security of a
cryptosystem. We tested the
haphazardness of digital images
using NIST SP 800-22 with the
specific aim of meeting these
requirements. Some of these tests
consist of different subsets. To
complete all NIST tests, a 24-bit
scrambled digital image of Lena is
used. Many beginning keys are used
in order to test the figure
haphazardness. Table 2 displays the
test results' aftereffects. By
dissecting these results, we can
determine that our predicted method
for digital picture encryption

http://www.ijetjournal.org
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successfully passes the NIST tests.
As a result, given the achieved
results, it can be said that the random
ciphers generated by our encryption
algorithm have highly irregular
outputs.

1.5 Uniformity of Pixels

Histograms uniformity of enciphered
contents is one of the most notable
features for assessing the security of
digital content encryption
frameworks [26]. We've taken

Key Key
Matric
es

Cipher Images

1 mod 24 1 1M 1C  1 x , ,R G BM I I I

3 mod 24 3 3M 2C 3 1xM C

7 mod 24 7 7M 3C 7 2xM C

14 mod 24 14 14M 4C 14 3xM C

29 mod 24 5 5M 4C 5 4xM C

59 mod 24 11 11M 5C 11 5xM C

Table 1. Key matrices for image
encryption by using rotation and spinning
operators

Test P-values for color encryption of
encrypted images

Results

Red Green Blue Pass
Frequency 0.16410 0.46703

0.25495
Pass

Block
frequency

0.64862 0.53145
0.17899

Pass

Rank 0.29191 0.29191
0.29191

Pass

Runs
 10,000M 

0.21762 0.90595
0.54043

Pass

Long runs of
ones

0.67514 0.71270
0.71270

Pass

Overlapping
templates

0.85988 0.85988
0.85988

Pass

No
overlapping
templates

0.92285 0.54825
0.99989

Pass

Spectral DFT 0.88464 0.38399
0.029523

Pass

Approximate
entropy

0.16074 0.33744
0.69469

Pass

Universal 0.99445 0.99292 Pass

http://www.ijetjournal.org
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0.99659
Serial P

values
1

0.17143 0.039989
0.65972

Pass

Serial P
values
2

0.87464 0.006063
0.98104

Pass

Cumulative
sums forward

0.3647 0.34767
0.35256

Pass

Cumulative
sums reverse

0.35221 0.89099
0.77967

Pass

Random
excursions

4X   0.57183 0.0001427
0.97465

Pass

3X   0.15716 0.40359
0.95603

Pass

2X   0.099872 0.54469
0.89146

Pass

1X   0.29907 0.47837
0.88326

Pass

1X  0.0037788 0.75769
0.85692

Pass

2X  0.0027926 0.43307
0.082712

Pass

3X  0.10337 0.67278
0.68683

Pass

4X  0.2619 0.66907
0.1332

Pass

Random
excursions
variants

5X   0.4330 0.45637
0.53288

Pass

4X   0.48074 0.90043
0.47950

Pass

3X   0.4907 0.081938
0.402778

Pass

2X   0.57415 0.035518
0.28009

Pass

1X   0.29168 0.21445
0.18145

Pass

1X  0.00066 0.24660
0.78927

Pass

2X  0.001451 0.47354
0.87737

Pass

3X  0.01364 0.31764
0.90486

Pass

4X  0.039974 0.15018
0.91954

Pass
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5X  0.065987 0.19477
0.47603

Pass

Table 2. NIST test results for encrypted image

Three 512x512, dark-level digital
images with different substances are
computed, along with their histograms.
Regarding Figs. (3a, 3b), all of the encipher
images' histograms under the projected
scheme are genuinely uniform and
fundamentally different from the original
image, which makes measurable assaults
problematic. The plain-picture histograms
feature extensive, sharp ascents followed by
sharp decreases. Consequently, it provides
no information that could be applied to a
quantifiable analysis attack against the
encrypted image (refer to Figs. 4a, 4b).

Figs. (3a, 3b). Histograms
of original Images Lena and Fruits

Figs. (4a, 4b). Histograms of
Encrypted Images Lena and Fruits

1.6 Pixels Correlation Test

It is noteworthy that adjacent pixels
in the image have a strong
association in the horizontal, vertical,
or corner-to-corner directions.
Therefore, in order to strengthen the
barrier against quantifiable
investigation, the protected

encrypted plan should remove this
relationship. The accompanying
method was finished in order to test
the relationship between neighboring
pixels in a plain and encrypted image.
In the beginning, 10,000 pairs of
adjacent pixels from the plain and
encrypted images were selected at
random [38, 39]. At that point, each

http://www.ijetjournal.org
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combine pair's correlation
coefficients were determined using
the accompanying mathematical
expression:

,
, 2 2

x y
x y

x y

r


 


where x and y are values of two
adjacent pixels at gray scale in the
image, ,x y is the covariance,

2 2andx y  are variances of random

variable x and y respectively. The
correlation coefficients of plain and
cipher images have different contents
conveyed in Tables 3 and 4 related to
plain and cipher images given in Figs
(2a, 2b, 3a, 3b). Moreover, the
quantitative analysis for correlation
coefficient is discussed in Table 3,
which shows the correlation
distribution of original and encrypted
images in horizontal, vertical and
diagonal directions.

Standar
d

images

Plain Encrypted (proposed scheme) Ref

Horizont
al

Vertic
al

Diagon
al

Horizonta
l

Vertic
al

Diagona
l

Horizontal Vertical
Diagonal

Lena 0.9740 0.9868 0.9612 -0.0113 -
0.0093

0.0027 0.041 0.0107
0.0097

Fruits 0.9753 0.9757 0.9567 -0.0129 -
0.0155

0.0012 - - -

Parrot 0.9566 0.9434 0.9260 -0.0108 -
0.0141

0.0054 - - -

Table 3. Correlation coefficients of plain cipher images

1.6.1 Correlation Between Original
and Encrypted Images

.By calculating the 2D coefficients of
correlation between original and encrypted
images, the correlation between numerous
pairs of original/encrypted images is
examined here [28]. The correlation
coefficients are computed using the
following equation.

  

   
1 1

2 2

1 1 1 1

M N

ij ij
i j

M N M N
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X X Y Y

 
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   

  



 

where X and Y represents the plain and
cipher image,

X and Y are the mean values of X and Y , M is the height and is the width of original / encrypted images. In Table 3, we have estimated correlation coefficients for the plain and cipher images in all three directions. The correlation coefficients of encryption pointed out in fourth, fifth and sixth columns. The
correlation coefficients among various pairs
of plain and cipher images are very small or
practically zero, therefore the plain and
cipher images are significantly different.
Additionally, the evaluation of the
correlation coefficient of anticipated process
with modern approaches using Lena image
given in Table 4. The results of our offered
scheme have lower values of correlation
coefficient which qualify for an efficient
technique for image enciphering in real time
applications.

http://www.ijetjournal.org


International Journal of Engineering and Techniques - Volume 10 Issue 5, September 2024

ISSN: 2395-1303 http://www.ijetjournal.org Page 11

Correlation directions

Horizontal Vertical Diagonal
Plain image 0.9740 0.9868 0.9612

Proposed encryption -0.0113 -0.0093 0.00270

scheme
Ref. 0.01089 0.01811 0.00610

Zhang et. Al 0.08200 0.04000 0.00500
Zhou et al 0.012 0.02700 0.00700

Ref 0.01589 0.06538 0.03231
Mao et. Al 0.04500 0.02800 0.02100

Etimadi et. Al 0.005 0.01100 0.02300

Table 4. Comparison of the correlation
coefficient of proposed scheme with
recent techniques using Lena image

1.7 Pixel Difference Analysis

By computing the PSNR and MSE values,
the pixel difference method-based image
quality assessment has been completed.
These error metrics are employed in the
comparison of various images.

1.7.1 MSE and PSNR Analysis

A digital image that has been jumbled up
should not be exactly the same as the
original. To gauge the degree of enciphering,
we calculate the mean square error (MSE)
between the unencrypted and encrypted
images. MSE can be described as follows:

 2

1 1

x

M N

ij ij
i j

P C
MSE

M N
 





where ijP and ijC allude to pixels situated at

ith row and jth column of unique digital and

scram- bled image separately. Larger the
MSE esteem, better the encryption security.
The encrypted image quality is assessed
utilizing PSNR (peak signal to noise ratio)
which is depicted by the following
expression.

max
1020log IPSNR

MSE
    

where Imax is the greatest pixel estimation of
image. The PSNR ought to be low esteem
when compares to the immense distinction
between plain and ciphered image. The
viability of pro- posed strategy, assessed as
far as MSE and PSNR for every one of the
three digital images, is presented in Table 5.

Images Encrypted (proposed scheme)

MSE PSNR

Lena 4859.03 11.30
Fruits 6399.05 10.10
Parrot 7274.44 9.55

Table 5. pixel difference based measures
of proposed scheme
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1.8 Three Dimensional Color
intensity of Plain and Encrypted
Images

The RGB color coordinates' intensity
determines how each pixel looks. The
amount of data that is stored in a pixel
determines the color depth. Bit depth is
another name for color depth, which
regulates pixel colors. Here, we display the
total number of pixels that correspond to the

image's intensity level (see Figs. (5a, 5b, 5c,
6a, 6b, and 6c)). The 3D color intensities in
encrypted images are fairly uniform,
resulting in a flat plan in RGB coordinates,
in contrast to the sharp peaks that make up
the 3D histograms for plain images. These
three-dimensional figures indicate that our
expected image encryption scheme is quite
strong and that an eavesdropper would not
be able to access or estimate any
information from the uniform distribution of
encrypted image pixels.
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Figs. (5a, 5b, 5c). RGB Images of Lena Figs. (6a, 6b, 6c). Histograms of RGB
Images of Lena

1.9 Entropy Investigation

Entropy is the most leading feature of
randomness [2, 17, 36]. Specified a source
of independent random events from set of
possible discrete events {y1, y2,. . ., yi} with
associated probabilities {p(y1), p(y2),. . .,

p(yi)}, the average per source output
information called entropy of source.

The yi in this condition is called source
images and 2N is the aggregate conditions
of data. For absolutely irregular source
emanating 2N signs, entropy ought to be N.
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For perfectly indiscriminate digital content,
the estimation of ideal data entropy is 8.
Various plain and cipher images entropies

accounted in Table 6 as indicated by the
original images of Figs. (2a, 2b).

Color component of
plain image

Color component of
encrypted image

Imag
e

Plain
Image

Red Gree
n

Blue Encrypted
image

Red Green
Blue

Lena 7.7502 7.26
33

7.590
9

6.9798 7.9988 7.9977 7.9978
7.9978

Fruit
s

7.6868 7.14
66

7.433
0

7.7588 7.9984 7.9980 7.9980
7.9979

Parro
t

7.1412 7.18
03

7.703
1

5.9653 7.9998 7.9981 7.9975
7.9976

Table 6. Information entropies of original and encrypted images

These entropy esteems are near the
hypothetical esteem 8. This implies data
leakage in encryption procedure is irrelevant
and the mechanism is protected upon
entropy attacks. We have compared
information entropy of our suggested

encryption technique with already developed
schemes. The entropy of the proposed
scheme for encrypted Lena image is superior
to existing algorithm on comparing; see
Table 7 [44].

Algorithm Entropy
Proposed 7.9988
Sun’s algorithm 7.9965

Baptista’s algorithm 7.9260
Wong’s algorithm 7.9690
Xiang’s algorithm 7.9950

Table 7. Comparison results for
information entropies of Lena image of
size 512 x 512
1.10 Robustness against
differential attack

We need to modify the digital plain image
(for example, one pixel) in order to
strengthen our image encryption technique
against differential attack. This modification
affects the entire comparing encrypted
image, with a possibility of a half pixel
changing. We show that our scheme is
sufficiently affectable to a plain image. A
modification in the ith block of a permuted
digital image directly affects the ith block of
an encrypted image. In any case, the
modification has little effect on the
previously jumbled blocks, negates its effect
gradually, and gradually disappears in the

subsequent blocks. Due to the fact that the
ith block only affects one pixel of the
(i+1)th block, or Di+1, it does not
immediately affect the subsequent blocks.
The number of pixels change rate (NPCR) is
coupled with the mean absolute error (MAE)
and UACI (unified average intensity) in
order to determine the impact of a small
variation in the digital plain contents on its
encrypted. The MAE is defined as follows:
let C(i, j) and P(i, j) be the gray level pixels
at the ith row and jth column of M×N plain
and cipher images, respectively:

   
,

, ,
.

x
i j
C i j P i j

MAE
M N




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increased the MAE esteem, which improved
the encryption security. NPCR and UACI
are the two fundamental measures that can
be used to testify the impact of changing a
single pixel in a plain image and an
encrypted image overall with the proposed
scheme. We examine two encoded images
with a single pixel difference in their source
image. The following mathematical
expressions can be used to determine the
NPCR and UACI if the first image is
represented as C1 (i, j) and the second image
as C2 (i, j).

 
,

,
x 100%

x
i j
D i j

NPCR
W H




where

 
   
   

1 2

1 2

0, , ,
,

1, , ,

C i j C i j
D i j

C i j C i j

 


   1 1
1 2

0 0

, ,1 x 100%
x 255

M N

i jj

C i j C i j
UACI

W H

 

 


 

Standar
d
images

NPCR UACI MAE

Max Min Mean Max Min Mean

Lena 99.997 99.612 99.713 34.43 33.21 33.87 79.22

Fruits 99.994 99.515 99.698 33.98 33.98 33.71 83.45

Parrot 99.998 99.597 99.869 33.53 33.11 33.24 75.3

Table. 8. The estimate of sensitivity analysis of proposed image encryption scheme

The higher the UACI value, the better the
encryption security. To assess the plain
image sensitivity, the plain image is first
encrypted. After that, a single pixel is
arbitrarily chosen and altered in the plain
image. The experimental results of our
proposed scheme are presented in Tables 8–
10, with the MAE values displayed in the
final column of Tables 8 and 9.

The sources of MAE, MPCCR, and UACI
across different plans are examined in
Tables 8–10. It shows that the UACI esteem
is greater than 34% and that the NPCR
esteems are consistently equal to the ideal
estimate of 1. This result demonstrates that

the expected scheme is highly sensitive to
even small changes in the original image;
for example, even if there is a 1-bit
difference between the two scrambled plain
images, the two unscrambled enciphered
images differ significantly from one another.
As such, when compared to alternative
schemes, the projected design has a higher
ability to withstand differential attacks. The
described algorithm's magnificence and
flexibility allow it to modify the cipher
image at any time, and its encrypted image
cannot be decrypted using only one matrix
and one phase. Phase θ and the two matrices
should be known in order to decode the
encrypted image. Since θ has large foci, an

http://www.ijetjournal.org
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enciphered image would change with even a
slight shift in stage, such as 0.01.
Additionally, we have contrasted our NPCR
and UACI results with some previously
published, well-known results [2–6]. The
suggested scheme is highly resistant to both
linear and differential attacks, and it closely
aligns with the findings in the references
[42–45].

Conclusion

We developed a novel encryption method
based on quantum rotation operators in this
research article. We have added confusion
and diffusion capabilities to our proposed
schemes by utilizing the quantum half

spinning. To confuse cryptanalysts, we
could compress or expand the key by simply
multiplying it with any nonsingular matrix
of [4×n] that is known to both the sender
and the recipient. Since no one knows which
matrices from set M are being multiplied—
two or more—cryptanalysts will have a
difficult time deciphering the key and
message (a challenge for crackers).Since the
algorithm being described deals with half
spinning, there are an infinite number of
points between -720˚ and +720^, and there
are four possible combinations of rotation
matrices. It is suggested that the suggested
algorithm is a strong contender for picture
encryption by employing statistical analysis
for our expected algorithm.

NPCR UACI MAE

Test
Image

Red Green Blue Red Green Blue Red Green Blue

Lena 99.88 99.73 99.79 33.33 33.88 32.78 82.78 77.88 81.78

Fruits 99.67 99.89 99.65 33.04 33.21 76.36 76.36 86.34 88.98

Parrot 99.82 99.91 99.87 33.16 33.45 79.87 79.87 65.23 69.88

Table . 9. The assessment of sensitivity analysis for color components.
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