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I. INTRODUCTION
Supercapacitors have emerged as one of the most talked

about devices in the recent years owing to their simplistic
function and game-changing applications in an industrial
context [1]. Supercapacitors (SCs) are electrochemical energy
storage devices that store a high amount of energy and can
deliver it at a rapid rate [5-6]. Typical energy storage devices
such as conventional electric capacitors have energy densities
ranging about 0.01 - 0.1 W h kg-1 while Li-ion batteries (LIBs)
although have energy densities of 100 – 265 W h kg-1, suffer
tremendously in terms of power density and cycling stability
[7,10]. A SC can store energy with density 1 – 10 W h kg-1 in
gravimetric terms and deliver it ten times faster than a LIB [5].
SCs work on the principle of surface adsorption and formation
of an electric double layer at the electrode-electrolyte interface
thus, not involving any intercalation and deintercalation of
ions into the bulk of the material thus, not exerting any stress
on the material lattice in the bulk [5]. This is the reason SCs
outperform batteries as far as cycling stability is concerned [7].
As we understand, it is the electrode material which plays

the most eminent role in determining the performance of a SC.
Generally, these devices are classified based on their electrode
materials which significantly dictate their energy storing
mechanism. There are crudely three types – Electric Double
Layer Capacitors (EDLCs) [11] which store energy
electrostatically within the nanoscale double layer without any
chemical reactions, Pseudocapacitors [12-13], which store

energy by means of charge transfer via Faradaic reactions
occurring at the electrode-electrolyte interface, and hybrid
supercapacitors [14], which work on a culmination of both
principles stated above. Over the years, various materials have
been tested in order to achieve the optimal electrochemical
performance for high energy SCs. It has been observed that
Faradaic materials such as metal oxides and chalcogenides
have exhibited higher specific capacitance compared to
EDLC-type materials such as carbon nanostructures [13].
TMDs are one of the candidates for electrode material

owing to the multiple low-energy separated oxidation states of
these metals which facilitates the redox reactions to take place.
Sulphides, selenides and tellurides of various metals such as
Fe, Ni, Co, Cu and Sn have been researched upon [27-29].
Iron being one of the cheapest and most easily available
transition metals, fits in as a suitable option. The main
problem with FeS2 is its poor ionic conductivity and chances
for material degradation [25]. Many complicated techniques
have been investigated including but not limited to
functionalization, making composites, morphological
optimization and many more [31-37]. This paper encompasses
the feasibility of using FeS2 and enhancement of its
electrochemical performance by means of doping with copper.
Being a good conductor of electricity, Cu atoms can fill in
some lattice sites to facilitate ionic charge transfer at the
electrode interface thus, improving the ionic conductivity of
the material. This would lead to an increase in the specific
capacitance of the electrodes while maintaining its stability. In
this work, a simple one-step solvothermal method has been
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employed and the electrochemical performance of Cu-doped
FeS2 is compared to that of pristine FeS2 which revealed a
near 50% increase in the specific capacitance without any
significant drop in the coulombic efficiency.

II. MATERIALS ANDMETHODS

A. Materials
Iron Sulphate Heptahydrate (FeSO4.7H2O), Anhydrous

Copper (II) Suphate (CuSO4) and Sodium Thiosulphate
Pentahydrate (Na2S2O3.5H2O) (99.99%, extrapure) were
purchased from Merck. Ethylene Glycol (99.5%) was
purchased from Sigma Aldrich.

B. Synthesis of pristine and Cu-doped FeS2
Cu-doped FeS2 nanostructures were prepared using

solvothermal method similar to Wang et Al. [27]. First 20 mL
ethylene glycol was added in 5 mL ethanol to form a solvent
and set to magnetic stirring at room temperature. 1.25 g of
FeSO4.7H2O, 1.24 g of Na2S2O3.5H2O and 0.143 g of CuSO4

was added to the prepared solvent and the solution was left
stirring for 1 hour. The prepared solution was then transferred
into a 40 mL Teflon lined stainless steel autoclave, then the
solvothermal synthesis was carried out at 200 °C for 24 h in an
oven. After naturally cooling to room temperature, the
autoclave was opened. The precipitate was centrifuged and
washed with distilled water and absolute ethanol three times
each, respectively. Finally, the sample was collected and dried
in vacuum at 80 °C for 6 h.
Pristine FeS2 was also prepared using the same method

only without the addition of CuSO4.

Figure 1: Schematic illustration of the synthesis route.

C. Physiochemical Characterization
The crystallographic information of the synthesized

materials was extracted by X-ray diffraction (XRD) using a
Rigaku Miniflex diffractometer with Cu-Kα (1.5406 Å) X-ray
source. Fourier Transform Infrared (FTIR) spectroscopy was
performed using a Shimadzu IR Spirit. The morphology of the
synthesized structures was investigated by scanning electron
microscopy using a SEM Carl Zeiss Supra 40. The N2
adsorption-desorption isotherms were produced using
Brunaer-Emmett-Teller (BET) technique at 77 K by a
Quantachrome NOVA-Touch surface area and pore size
analyser. X-ray photoelectron spectroscopy (XPS) data was
generated using a PHI 5000 Versa Probe III system.

D. Electrochemical Characterization
Electrochemical measurements were performed in a three-

electrode configuration, having Ag/AgCl in 3 M KCl as the
reference electrode and platinum wire as the counter electrode.
Working electrode was fabricated by preparing the slurry
dissolving 80 wt% of active material (FeS2), 10 wt% of
polyvinylidene fluoride (PVDF) (binder) and 10 wt%
activated carbon in acetone and continuously stirring for 2 h at
80 °C for complete homogeneity. The slurry was dropcasted
on a 1 cm2 graphite sheet and dried well at 80 °C. 1 M Na2SO4

was utilized as the electrolyte. The electrochemical
estimations like cyclic voltammetry and galvanostatic charge-
release estimates were performed using a Metrohm Autolab
(PGSTAT302N).

III. RESULTS AND DISCUSSIONS

A. Physiochemical Properties

The crystallographic features and phase purity of as-
synthesized pristine and 10 % Cu-doped FeS2 were assessed
through XRD analysis. The obtained XRD patterns, depicted
in Figure 2(a), were indexed using the JCPDS card no. 65-
3321, corresponding to the isotropic cubic phase of FeS2. In
both samples, distinct peaks were observed around 2θ = 29, 33,
37, 47 and 56°, corresponding to (111), (200), (210), (220)
and (311) planes, respectively. These could be attributed to
the cubic phase of FeS2. The addition of Cu introduced no
additional peaks other than those present in pristine FeS2
indicating that parent crystal structure remained unaltered
even after doping since the ionic radii of the dopant ion is
comparable to the host ion. There was no significant peak
shift after doping. Furthermore, broadening of characteristic
peaks in the doped sample suggested reduced crystallite size,
particularly evident in case of the (210) and the (311) peaks.

Table 1: Crystallite Size and Lattice Parameter Specifications for Undoped
and (10%) Cu-doped FeS2.

Sample Lattice
Parameter (Å)

Crystallite
size D (nm)

Pristine FeS2 5.43 28.54
10% Cu-doped FeS2 5.63 24.21
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To determine the crystallite sizes, Scherrer’s formula was
applied using the most intense (200) peak for both samples.
Results indicated a reduction in crystallite size from 28.54 nm
for pristine FeS2 to 24.20 nm for Cu-doped FeS2, indicative of
the influence of doping on crystalline domain size.

Figure 2: (a) XRD profiles and (b) FTIR spectra for pristine and 10% Cu-
doped FeS2.

From Figure 2(b), it can be seen that the most prominent
peak indicates the Fe-S bond beyond 900 cm-1. There are other
peaks at 3400 cm-1 that indicate the presence of impurities
such as moisture in the sample owing to its solvothermal
synthesis protocol.
BET surface area experiments were performed by

adsorption-desorption of N2. The N2 adsorption-desorption
isotherms for all samples were recorded at 77 K and are
shown in Figure 3. The estimated value of the specific surface
area is 21.43 m2 g-1 and 9.02 m2 g-1 for doped and undoped
samples, respectively. The average pore radii for both samples
were observed to be approximately 1.58 nm. Hence, the
microporous nature was confirmed.
Figure 4(a) shows a SEM micrograph of the 10% copper

doped sample of FeS2. The image clearly shows that
nanoparticles with spherical and ellipsoidal shaped

morphologies were formed which was in correspondence to
the expected results. Also, the EDS spectrum of the same has
been reported in Figure 4(b-d). The composition of elements
is given in Table 2. The EDS spectrum shows a uniform
distribution of both Fe and S. The presence of Cu was
confirmed through EDS analysis of Cu-doped FeS2.

Figure 3: N2 adsorption-desorption isotherms for (a) pristine FeS2 and (b)
10% Cu-doped FeS2 with their respective pore size distributions given in the

insets.

XPS analysis was performed on the Cu-doped FeS2 sample
whose results are shown in Figure 5(a-d). XPS was operated
at 15 kV with carbon 1s signal as the reference peak at a
binding energy of 285 eV. Figure 5(a) shows the XPS survey
spectrum which confirms the presence of Fe, S and Cu. The
carbon peak was observed due to involvement of organic
compounds during synthesis. The O 1s peak is observed due
to exposure to moisture as synthesis was carried out in
ambient atmosphere. Fe 2p peaks were observed at energies ~
713 eV (Fe 2p3/2) and 723 eV (Fe 2p1/2) along with satellite
peaks. Similarly, S22- (disulphide) peaks were found at
energies ~ 161 eV (S 2p3/2) and 162 eV (S 2p1/2). The
confirmation of Cu replacing the Fe atom and formation of Cu
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– S bond was revealed by Cu+ peaks at ~ 930 eV which
indicated successful doping of Cu in FeS2.

Figure 4: (a) SEM image of the 10% Cu-doped FeS2 nanoparticles. (b-d) Elemental mapping by EDS for the elements

S, Fe and Cu respectively.

Figure 5: (a) XPS survey spectrum for 10% Cu-doped FeS2. XPS spectra displaying peaks of (b) Cu 2p, (c) S 2p and (d) Fe 2p.
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Table 2: Elemental Composition Determined from EDS Survey Scan Displaying Percentage of each Element Present.

Element Composition (in %) as per EDS survey
Fe 65
S 24
Cu 11

B. Electrochemical Performance
The electrochemical analysis of both doped and undoped

sample-based electrodes was performed in 1 M Na2SO4
electrolyte within an optimum potential window of 1.3 V.
Figure 6 (a) & (b) show the cyclic voltammograms for scan
rates varying from 5 to 200 mV s-1 for the pristine and Cu
doped FeS2 coated electrodes respectively. The cyclic
voltammetry (CV) plots reveal a nearly rectangular curve,
indicating the formation of a double-layer along with a slight
deviation attributed to the pseudocapacitive component of
energy storage. The specific capacitances for both samples
were determined by calculating the area under the CV curves.
For the doped sample, the maximum specific capacitance was
measured to be 85 F g-1 at a scan rate of 5 mV s-1 and the same

for the undoped sample was found to be 58 F g-1. These
findings demonstrate a higher capacity of Cu-doped sample
compared to the pristine one. The results of the galvanostatic
charge-discharge (GCD) are displayed in Figure 6 (c) and (d)
for pristine and Cu-doped FeS2 samples respectively. The
maximum specific capacitance for the undoped and doped
samples are 61 F g-1 and 122 F g-1 at 1 A g-1 current density
respectively. The detailed results of GCD are given in Table 3.
Further, Figure 7(a) and (b) clearly indicate that the 10% Cu-
doped FeS2 sample exhibits higher specific capacitances at all
scan rates and all current densities compared to pristine FeS2.

Figure 6: Cyclic voltammograms of (a) pristine and (b) 10% Cu-doped FeS2 samples at different Scan Rates and Charge-Discharge profiles for (c) pristine and
(d) 10% Cu-doped FeS2 at different Current Densities in 1 M Na2SO4.

http://www.ijetjournal.org


International Journal of Engineering and Techniques - Volume 10 Issue 4, July 2024

ISSN: 2395-1303 http://www.ijetjournal.org Page 107

Table 3: Achieved Specific Capacitances for Pristine and 10% Cu-doped FeS2 Samples at Different Current Densities.

Current Density (A g-1) Specific Capacitance (F g-1)
Pristine FeS2

Specific Capacitance (F g-1)
10% Cu-doped FeS2

1 61 122
2 52 108
3 43 86
4 42 84
5 40 77

Figure 7: Comparative study of (a) Specific capacitance vs scan rates (b) Specific capacitance vs current density and (c) Cycling stability performance of the
pristine and 10% Cu-doped FeS2 at 3 A g-1 current density.

IV. CONCLUSION

This work establishes a novel strategy to synthesize the
pristine and Cu-doped FeS2 (10%) using a solvothermal
method. XRD analysis of both the samples was carried out to

confirm their phase. Further physiochemical characterizations
of both the samples were performed such as FTIR, BET, XPS,
SEM and EDS. Electrochemical characterization
demonstrated a substantial enhancement in specific
capacitance upon doping with copper, with a maximum
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specific capacitance of 122 F g-1 for the 10% doped sample
and of 61 F g-1 for the undoped sample at a current density of
1 A g-1 in 1 M Na2SO4. This nearly doubled capacity signifies
the substantial enhancement of copper doping on the
capacitive behaviour of FeS2 electrodes. Moreover, cycling
stability of the Cu-doped FeS2 electrode revealed an 87%
coulombic efficiency retention after 200 charge-discharge
cycles, highlighting the durability and long-term stability of
the electrode material.
Conclusively, the successful synthesis and comprehensive

characterization of 10% Cu-doped FeS2 electrodes have
provided insights into the significant enhancement of
electrochemical performance achieved through copper doping.
These findings pave the way for further advancement in
doping in FeS2 based electrodes for supercapacitor.
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