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ABSTRACT
This work presents Depth Anything, a highly practical solution for robust monocular depth estimation. Without
pursuing novel technical modules, we aim to build a simple yet powerful foundation model dealing with any images
under any circumstances. To this end, we scale up the dataset by designing a data engine to collect and automatically
annotate large-scale unlabeled data (∼62M), which significantly enlarges the data coverage and thus is able to reduce
the generalization error. We investigate two simple yet effective strategies that make data scaling-up promising. First, a
more challenging optimization target is created by leveraging data augmentation tools. It compels the model to actively
seek extra visual knowledge and acquire robust representations. Second, an auxiliary supervision is developed to
enforce the model to inherit rich semantic priors from pre-trained encoders. We evaluate its zero-shot capabilities
extensively, including six public datasets and randomly captured photos. It demonstrates impressive generalization
ability. Further, through fine-tuning it with metric depth information from NYUv2 and KITTI, new SOTAs are set. Our
better depth model also results in a better depth-conditioned ControlNet.

Introduction
Depth anything is an area of computer vision that involves estimating the distance between imaged objects and the
camera. It allows for understanding a scene’s three-dimensional structure from two-dimensional data. Using artificial
intelligence (AI), depth analysis allows machines to perceive the world more like humans. This empowers them to
perform tasks like objectdetection, scene reconstruction, and navigating 3D space. Depth Anything is a groundbreaking
approach to monocular depth estimation. It effectively harnesses a combination of 1.5 million labeled images and over
62 million unlabeled images. This is a significant differentiation from traditional techniques, Which primarily relied on
smaller, labeled datasets. Leveraging the power of large-scale unlabeled data offers a more robust solution for
understanding complex visual scenes. For unlabeled images, the model applies consistency loss. This process
encourages the model to produce similar depth predictions for slightly perturbed versions of the same image. Depth
Anything to improve identity verification processes. It improves security by enabling the system to better discern
between a real person and a photo or video. In AR experiences, its precise depth estimation allows for the easy
integration of digital objects into real-world scenes. This could greatly simplify complex scene construction tasks in
gaming, education, and retail. For autonomous vehicles, the ability to accurately perceive and understand the 3D
structure oftheenvironmentfrommonocularimagescancontributetosafernavigation.

OBJECTIVE
The objective of Depth Anything is to provide a highly practical solution for robust monoculardepth estimation. It aims
to build asimpleyet powerful foundation model that can deal with any images under any circumstance The core
innovation of Depth Anything lies in harnessing the potential of unlabeled images4. The model generates pseudo labels
for these images by passing them through a pre-trained Monocular Depth Estimation (MDE) model, resulting in a
pseudo-labeled.
Without pursuing novel technical modules, Depth Anything focuses on building a model that can handle a wide range of
images and scenarios3. It leverages the power of large- scaleunlabeled data,which significantly enlarges thedatacoverage
and thus is ableto reducethe generalization. In summary, the objective of Depth Anything is to unleash the power of
large- scale unlabeled data and provide a robust solution for monocular depth estimation

Literature Review
METER:Amobilevisiontransformerarchitectureformonocular depth estimation
LorenzoPapa,PaoloRussoIreneAmerini
Depth estimation is a fundamental knowledge for autonomous systems that need to assess their own state and perceive
the surrounding environment. Deep learning algorithms for depth estimation have gained significant interest in recent
years, owing to the potential benefits of this methodologyin overcoming the limitations of active depth sensing systems.
Moreover, due to the low cost and size of monocular cameras, researchers have focused their attention on monocular
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depth estimation (MDE), which consists in estimating a dense depth map from a single RGB video frame. State of the
art MDE models typically rely on vision transformers (ViT) architectures that are highly deep and complex, making
them unsuitable for fast inference on devices with hardware constraints.
Purposely, in this paper, we address the problem of exploiting ViT in MDE on embedded devices. Those systems are
usually characterized by limited memory capabilities and low-power CPU/GPU. We propose METER, a novel
lightweight vision transformer architecture capable of achieving state of the art estimations and low latency inference
performances on the considered embedded hardwares: NVIDIA Jetson TX1 and NVIDIA Jetson Nano.
AModelZooforRobustMonocularRelativeDepthEstimation Reiner Birkl, Diana Wofk, Matthias Mooller
We release MiDaS v3.11 for monocular depth estimation, offering a variety of new models based on different encoder
backbones. This release is motivated by the success of transformers in computer vision, with a large variety of
pretrained vision transformers now available. We explore how using the most promising vision transformers as image
encoders impacts depth estimation quality and runtime of the MiDaS architecture. Our investigation also includes recent
convolutional approaches that achieve comparable quality to vision transformers in image classification tasks. While the
previous release MiDaS v3.0 solely leverages the vanilla vision transformer ViT, MiDaS v3.1 offers additional models
based on BEiT, Swin, SwinV2, Next-ViT and LeViT. These models offer different performance- runtime tradeoffs. The
best model improves the depth estimation quality by 28% while efficient models enable downstream tasks requiring
high frame rates. We also describe the general process forintegrating new backbones.\
Monoculardepthestimationreferstothetask of regressingdensedepthsolelyfrom asingle inputimage orcameraview.
Solvingthisproblem hasnumerousapplications indownstreamtasks like generativeAI 3D reconstruction and autonomous
driving . However, it is particularly challenging to deduce depth information at individual pixels given just a single
image, as monocular depth estimation is an under constrained problem. Significant recent progress in depth estimation
can be attributed to learning-based methods. In particular, dataset mixing and scale-and-shift-invariant loss construction
has enabled robust and generalizable monocular depth estimation with MiDaS .
ZeoDepth:Zero_shotTransferbyCombiningRelativeandMetricDepth
ShariqFarooqBhat,ReinerBirkl,DianaWofk,PeterWonka,MatthiasMuller.
This paper tackles the problem of depth estimation from a single image. Existing work either focuses on generalization
performance disregarding metric scale, i.e.relative depth estimation, or state- of-the-art results on specific datasets,
i.e.metric depth estimation. We propose the first approach that combines both worlds, leading to a model with excellent
generalization performance while maintaining metric scale. Our flagship model, ZoeD-M12-NK, is pre-trained on 12
datasets using relative depth and fine-tuned on two datasets using metric depth. We use a lightweight head with a novel
bin adjustment design called metric bins module for each domain. During inference, each input image is automatically
routed to the appropriate head using a latent classifier. Our framework admits multiple configurations depending on the
datasets used for relative depth pre-training and metric fine-tuning. Without pre- training, we can already significantly
improve the state of the art (SOTA) on the NYU Depth v2 indoor dataset. Pre-training on twelve datasets and fine-
tuning on the NYU Depth v2 indoor dataset, we can further improve SOTA for a total of 21% in terms of relative
absolute error (REL). Finally, ZoeD-M12- NK is the first model that can jointly train on multiple datasets (NYU Depth
v2 and KITTI) without a significant drop in performance and achieve unprecedented zero-shot generalization
performance to eight unseen datasets from both indoor and outdoor domains.
OnthemetricsforEvaluatingMonocularDepthEstimation.
AkhilGurram,Antonio,M.Lopez
Monocular Depth Estimation (MDE) is performed to produce 3D information that can be used in downstream tasks such
as those related to on-board perception for Autonomous Vehicles (AVs) ordriver assistance. Therefore, a relevant
arising question is whether the standard metrics for MDE assessment are a good indicator of the accuracy of future
MDE-based driving-related perception tasks. We address this question in this paper. In particular, we take the task of 3D
object detection on point cloudsasaproxyofon-boardperception. Wetrain andteststate-of-the-art3Dobjectdetectorsusing
3D point clouds coming from MDE models. We confront the ranking of object detection results with the ranking given
by the depth estimation metrics of the MDE models. We conclude that, indeed, MDE evaluation metrics give rise to a
ranking of methods that reflects relatively well the 3D object detection results we may expect. Among the different
metrics, the absolute relative (abs-rel) error seems to be the best for that purpose.
Monocular depth estimation (MDE) is addressed from different settings determined by the dataavailable at training time,
e.g., LiDAR and virtual-worldsupervision, stereo [8] and structure-from- motion (-self-supervision, and combinations of
those . MDE results are compared by using de facto standard metrics (e.g., absrel, rms, etc.) established by Eigen et al. .
Reviewing literature results, we can observe that, in terms of such MDE metrics, the difference among different
proposals is not too large even the way of training the model is quite different.
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Groundembeddingformonoculardepthestimation
Xiaodong yang , Zhuang maqcraft, Zhiyuji
Monocular depth estimation is an ill-posed problem as the same 2D image can be projected from infinite 3D scenes.
Although the leading algorithms in this field have reported significant improvement, they are essentially geared to the
particular compound of pictorial observationsand camera parameters (i.e., intrinsics and extrinsics), strongly limiting
their generalizability in real-world scenarios. To cope with this challenge, this paper proposes a novel ground
embedding module to decouple camera parameters from pictorial cues, thus promoting the generalization capability.
Given camera parameters, the proposed module generates the ground depth, which is stacked with the input image and
referenced in the final depth prediction. A ground attention is designed in the module to optimally combine ground
depth with residual depth. Our ground embedding is highly flexible and lightweight, leading to a plug-in module that is
amenable to be integratedintovariousdepthestimationnetworks.Experimentsrevealthatourapproach achieves the state-of-
the-art results on popular benchmarks, and more importantly, renders significant generalization improvement on a wide
range of cross-domain tests.
Accurate depth acquisition is crucial for many robotics application as depth provides pivotalinformation foronboard
tasks ranging from perception , predictionto planningAlthough range sensors (e.g., LiDAR) are widely used to produce
precise depth measurements, there has been fast growing attentiontocamerabased
depthestimationfrombothacademiaandindustryduetoitsportabilityandA typical monocular depth estimation network
adopts an encoder-decoder architecture, which can be trained in a supervised or self-supervised mannerMost of the
existing works in this field focus on designing more advanced network architecture or engineering more effective loss
function.
Towardszeroshotmetric3Dpredictionfromasingle image
Weiyin,chiZhango,haochen,gangyu
Reconstructing accurate 3D scenes from images is a long-standing vision task. Due to the ill-posedNess of the single-
image reconstruction problem, most well-established methods are built upon multi- view geometry. State-of-the-art
(SOTA) monocular metric depth estimation methods can only handle a single camera model and are unable to perform
mixed-data training due to the metric ambiguity. Meanwhile, SOTA monocular methods trained on large mixed datasets
achieve zero-shot generalization by learningaffine-invariant depths, which cannot recoverreal-worldmetrics. In this
work, weshowthat the key to a zero-shot single-view metric depth model lies in the combination of large-scale
datatraining and resolving the metric ambiguity from various camera models. We propose a canonical camera space
transformation module, which explicitly addresses the ambiguity problems and can be effortlessly plugged into existing
monocular models. Equipped with our module, monocular models can be stably trained over 8 millions of images with
thousands of camera models, resulting in zero-shot generalization to in-the-wild images with unseen camera settings.
Experiments demonstrate SOTA performance of our method on 7 zero-shot benchmarks. Ourmethod can recover the
metric 3D structure on randomly collected Internet images, enabling plausible single-image metrology. Downstream
tasks can also be significantly improved by naively plug-in our model. E.g., our model relieves the scale drift issues of
monocular-SLAM , leading to metric scale high-quality dense mapping.
MTFormer:Multi-taskLearningviaTransformerandCross-Task Reasoning
XiaogangXu,HengshuangZhao,VibhavVineet,Ser-NamLim,Antonio
"In this paper, we explore the advantages of utilizing transformer structures for addressing multi- task learning (MTL).
Specifically, we demonstrate that models with transformer structures are more appropriate for MTL than convolutional
neural networks (CNNs), and we propose a novel transformer-based architecture named MTFormer for MTL. In the
framework, multiple tasksshare the same transformer encoder and transformer decoder, and lightweight branches are
introduced to harvest task-specific outputs, which increases the MTL performance and reducesthe time-space
complexity. Furthermore, information from different task domains can benefiteach other, and we conduct cross-task
reasoning. We propose a cross-task attention mechanism for further boosting the MTL results. The cross-task attention
mechanism brings little parameters and computations while introducing extra performance improvements. Besides, we
design a self- supervised cross-task contrastive learning algorithm for further boosting the MTL performance. Extensive
experiments are conducted on two multi-task learning datasets, on which MTFormer achieves state-of-the-art results
with limited network parameters and computations. It also demonstrates significant superiorities for few-shot learning
and zero-shot learning.
The introduction of "Mtformer: Multi-task learning via transformer and cross-task reasoning" likely provides
background information on multi-task learning (MTL) and its importance in various machine learning applications. It
might discuss the challenges faced in traditional single-task learningapproaches, such as data inefficiency and difficulty
in transferring knowledge across tasks. The introduction might also highlight the potential of transformer-based models
in capturing complex patterns in data and their success in various natural language processing and computer vision tasks.
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EXISTING SYSTEM
MiDaS, which stands for Multiple Depth Estimation Accuracy with Single Network, is a deep learning model designed
for monocular depth estimation. This means it can estimate the depth of objects from a single 2D image. These models
offer different performance-runtime trade-offs. The best model improves the depth estimation quality by 28% while
efficient models enable downstream tasks requiring high frame rates. The MiDaS architecture was trained on up to 12
datasetswith multi- objective optimization. TheMiDaS is used to compute depth from a single image. It provides a
variety of models to choose from, depending on the quality and speed-performance trade-off that suits your needs.
SYSTEMARCHITECTURE
The System consists of the following steps :-

1. Input Image
2. Image Encoder
3. Depth Estimation
4. Decoder

Output

Fig.1. Architecture Of Proposed System

Monocular Depth Estimation
Monocular depth estimation involves predicting the depth of a scene from a single image. The system
architecture typically consists of:
Encoder: A convolutional neural network (CNN) that extracts features from the input image.Thisnetwork
typically consists of multiple layers, such as VGG, ResNet, or MobileNet, which are pre-trained on large
datasets like ImageNet to capture general image features effectively.
Decoder: Another CNN that takes the features extracted by the encoder and generates a depth map. This network may
consist of several up sampling and convolutional layers to progressively refine the depth information.
Skip Connections: To capture both low-level and high-level features, skip connections are often employed. These
connections directly link corresponding layers from the encoder to the decoder, allowing the decoder to access fine-
grained details from earlier stages of the encoding process.
Loss Function:Afunctionthatquantifiesthedifferencebetweenthepredicteddepthmapandthe ground truth
depth map. Common loss functions used in monocular depth estimation include mean squared error
(MSE) or structural similarity index (SSIM)

Training Data: A large dataset containing paired images and their corresponding depth maps is used to train the
network. These datasets are often generated using depth sensors like LiDAR or stereo cameras, with additional data
augmentation techniques applied to enhance the diversity of the training data.
By combining these components effectively, a monocular depth estimation system can accurately predict the depth of a
scene from a single input image, enabling various applications such as augmented reality, autonomous driving, and
robotics.
BACKGROUND SUBTRACTION
Background subtraction is a fundamental technique in image processing and computer vision used for
detecting moving objects within a scene by separating them from the static background. Here's how it works:
Background Modeling: The process begins with creating a model of the background scene. This modelrepresentswhat
thescenelookslikewithoutanyforegroundobjects. Itcan beconstructedusinga single frame (static background model) or a
collection of frames (dynamic background model) captured over time. Techniques range from simple averaging of pixel
values over time to more sophisticated methods such as Gaussian mixture models or deep learning-based approaches.
Foreground Detection: Once the background model is established, each new frame of the video or image sequence is
compared with the background to identify pixels that differ significantly. These differing pixels are considered potential
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foreground pixels, indicating the presence of moving objects. The comparison can be done using simple intensity
differences or more complex methods like color or texture analysis.
Foreground Segmentation: The detected foreground pixels are then segmented to delineate the boundaries of
individual moving objects. This segmentation step helps isolate each object from its surroundings, making it easier to
track and analyze.
Post-processing: To refine the results and remove noise or artifacts, post-processing techniques such as morphological
operations (e.g., erosion, dilation) or connected component analysis may be applied. These operations help to smooth
object boundaries, fill in gaps, and remove small isolated regions that are unlikely to be actual objects.

Object Tracking: Background subtraction is often used as a precursor to object tracking, where the detected foreground
objects are followed over time to estimate their trajectories and predict their future positions. Tracking algorithms can
employ techniques such as Kalman filtering, particle filtering, or deep learning-based methods to maintain object
identity and handle occlusions or changes inappearance.

Background subtraction is commonly used in various applications such as surveillance, traffic monitoring, human-
computer interaction, and video analysis. While it is effective in scenarios with relatively static backgrounds and well-
defined foreground objects, it may encounter challenges in complex environments with dynamic backgrounds, changing
lighting conditions, or occlusions. Advanced techniques, including adaptive background modeling and hybrid
approaches combining background subtraction with other methods like optical flow or deep learning, are employed to
address these challenges and improve detection accuracy and robustness.

Fig.2. Background Subraction

MASKING

Fig.3. Fore ground Masking
Maskinginimagedetectioninvolvesusingabinarymasktoisolateorextractspecificregionsofinterest within an
image. Here's a brief explanation of how masking works:
1. Definition of Mask: A mask is essentially a binary image with the same dimensions as the original image, where
each pixel is assigned a value of either 0 (black) or 1 (white). Pixels with a value of 1 in the mask represent the regions
of interest (foreground), while pixels with a value of 0 represent the background.
2. Application of Mask: To apply the mask to the original image, a pixel-wise multiplication operation is performed
between the mask and the original image. This operation results in a new image where pixels outside the masked region
are set to zero (black), effectively "masking out" those areas and leaving only the regions specified by the mask intact.

3. Isolation of Regions: By using different masks, specific regions or objects within the image can be isolated or
extracted. For example, a mask can be created to highlight only certain colors, shapes, or textures within the image,
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effectively filtering out irrelevant information and focusing attention on the desired features.
4. Combination of Masks: Multiple masks can be combined using logical operations such as AND, OR, orXOR to
createmorecomplex masks orto extract overlapping regions ofinterest. This allowsfor finer control over the selection and
extraction of image elements based on various criteria.
5. Usage in Object Detection: In the context of object detection, masking can be used to segment objects from the
background, making it easier to identify and analyze individual objects within the scene. Masking techniques are often
employed in conjunction with other detection methods, such as edge detection, thresholding, or machine learning-based
approaches, to refine object boundaries and improve detection accuracy.
Overall, masking is a powerful technique in image detection that enables selective processing and analysis of specific
regions within an image, facilitating tasks such as object segmentation, feature extraction, and image enhancement.

IMAGE TRACKING
In monocular depth estimation, image tracking involves the process of following objects or features of interest across
consecutive frames of a video sequence. Here's a brief explanation:

Fig:4 ImageTracking
InitialObjectDetection:Beforetrackingbegins,objectsorfeaturesofinterestare typically
detected in the first frame of the video sequence using object detection or feature extraction techniques. This initial
detection provides the starting point for tracking.
1. Feature Matching: In subsequent frames, the detected objects or features are matched with their corresponding
counterparts from the previous frame. This matching process can be based on various similarity measures, such as
spatial proximity, appearance similarity, or feature descriptors like SIFT (Scale-Invariant Feature Transform) or SURF
(Speeded-Up Robust Features).
2. Motion Estimation: Once the corresponding features are identified, the motion between frames is
estimatedtodeterminehow theobjectsor featureshavemoved.Thismotionestimationcanbeachieved
3. Update and Refinement: As new frames are processed, the object positions or feature locations are
updatedbasedontheestimatedmotion.Additionally,trackingalgorithmsmayincorporatetechniquesto refine the tracking
results, such as Kalman filtering, which predicts the object's future position based on its past trajectory and corrects any
errors in the tracking process.
4. Challenges and Considerations: Image tracking in monocular depth estimation faces challenges such
as occlusions, changes in object appearance, and camera motion. To address these challenges, tracking
algorithms may employ strategies such as feature re-detection, adaptive model updating, or robust estimation
techniques to maintain accurate tracking across varying conditions.
Overall, image tracking plays a crucial role in monocular depth estimation by enabling the consistent tracking of objects
or features over time, which is essential for tasks such as scene reconstruction, motion analysis, and 3D mapping.

IMAGERECOGNITION
In monocular depth estimation, image recognition involves identifying and categorizing objects or scenes
within a single image. Here's a brief explanation
Object Detection and Classification: Image recognition algorithms detect objects within an image
andclassifytheminto predefinedcategories.Techniquessuchasconvolutionalneuralnetworks(CNNs) are
commonly used for this task, where the network learns to recognize object features and classifythem based
on learned patterns.
the algorithm for discovering novel object features builds upon previous iterations by incorporating advanced
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clustering, representation learning, and novelty detection techniques to enhance feature discovery efficiency,
accuracy, and adaptability across various application domains.

Fig.5. input image
RESULTS
The execution of the process will be explained clearly with the help of the continuous screenshots. The whole process in
the execution is uploading a image after uploading image and we have to submit the image. After submitting, the system
will automatically estimate the depth map through colors. This whole process is done in four simple steps. Each figure
mentioned below are the simultaneous process of screening outputs.
LunchingPython app.py

opensaURLlink
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Upload Image

Submit the Image

Image processing
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Depth Map with Slider View

Final Depth Map

CONCLUSION
Depth anything presents a highly practical solution for robust monocular depth estimation, emphasizing the utilization of
cheap and diverse unlabeled images.Throughtheimplementationoftwosimpleyetpowerfulstrategies,namelyposing
amorechallengingoptimizationtargetduringlearningandpreservingrichsemanticpriors from pre-trained models, depth
anything achieves remarkable zero-shot depth estimation performance. Moreover, it serves as a promising initialization for
downstream tasks such as metric depth estimation and semantic segmentation. By leveraging these strategies, depth
anything not only demonstrates impressive generalization ability but also sets new benchmarks in metric depth estimation.
This work underscores the importance of innovative approaches to dataset scaling-up and highlights the potential of
unlabeled data in advancing the field of monocular depth estimation.

FUTURE ENHANCEMENTS
In future work, enhancing Depth Anything could involve exploring novel techniques for incorporating temporal information
to handle dynamic scenes more effectively, thereby improving its performance in scenarios with moving objects or
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changing environments. Additionally, investigating methods to leverage self-supervised learning approaches or
unsupervised domain adaptation could further enhance the model's ability to generalize across diverse datasets and domains,
ultimately advancing its practicality and robustness for real-world applications in robotics, autonomous driving, and virtual
reality.
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