RESTRAINED VERTEX DOMINATION ON *S*-**VALUED GRAPHS**

DR.S.MANGALA LAVANYA,ASSISTANT PROFESSOR, THE STANDARD FIREWORKS RAJARATNAM COLLEGE FOR WOMEN SIVAKASI-626123. TAMILNADU. MEETLAVAN78@GMAIL.COM

ABSTRACT. In this paper, we introduce the notion of restrained vertex domination on S- valued graphs and study some properties.

AMS Classification: 05C25,16Y60

Keywords: Semirings, Graphs, *S*– valued graphs, restrained Weight Dominating vertex set.

1. INTRODUCTION

In[6], the authors introduced the notion of S- valued graphs, where S is a semiring. In graph theory, domination of graphs is the most powerful area of research for, it has several applications in other areas of sciences. It was initicted by Berge [1]. In [7], the authors have studied the vertex domination on S- valued graphs. In this paper we discuss the notion of restrained vertex domination on S- valued graphs.

2. PRELIMINARIES

In this section we recall some basic definitions that are needed for our work.

Definition 2.1. [4] A semiring $(S, +, \cdot)$ is an algebraic system with a non-empty set S together with two binary operations + and \cdot such that

- (1) (S, +, 0) is a monoid.
- (2) (S, \cdot) is a semigroup.
- (3) For all $a, b, c \in S$, $a \cdot (b + c) = a \cdot b + a \cdot c$ and $(a + b) \cdot c = a \cdot c + b \cdot c$.
- (4) $0 \cdot x = x \cdot 0 = 0 \forall x \in S$.

Definition 2.2. [4] Let $(S, +, \cdot)$ be a semiring. \leq is said to be a Canonical Preorder if for $a, b \in S$, $a \leq b$ if and only if there exists an element $c \in S$ such that a + c = b.

1

Definition 2.3. [6] Let $G = (V, E \subset V \times V)$ be a given graph with $V, E \models \phi$. For any semiring $(S, +, \cdot)$, a semiring-valued graph (or a S-valued graph), G^S , is defined to be the graph $G^S = (V, E, \sigma, \psi)$ where $\sigma : V \rightarrow S$ and $\psi : E \rightarrow S$ are defined to be

 $\psi(x, y) = \min \{\sigma(x), \sigma(y)\} \quad if \ \sigma(x) \leq \sigma(y) \ or \ \sigma(y) \leq \sigma(x)$ $0 \qquad otherwise$

for every unordered pair (x, y) of $E \subset V \times V$. We call σ , a S-vertex set and ψ , a S-edge set of S-valued graph G^{S} .

Definition 2.4. [7]A vertex v in G^S is said to be a weight dominating vertex if $\sigma(u) \leq \sigma(v), \forall u \in N_S[v]$.

Definition 2.5. [7]A subset $D \subseteq V$ is said to be a weight dominating vertex set if for each $v \in D$, $\sigma(u) \leq \sigma(v)$, $\forall u \in N_s[v]$.

Definition 2.6. [3] *A* set $S \subseteq V$ is a restrained dominating set if every vertex V - S is adjacent to a vertex in S and another vertex in V - S.

Definition 2.7. [7] A subset $D \subseteq V$ is an independent vertex set of G^{S} if $u, v \in D$ such that $N_{S}(u) \cap (v, \sigma(v)) = \phi$.

Definition 2.8. [7]A subset $D \subseteq V$ is said to be a maximal independent vertex set if

- (1) D is an independent vertex set.
- (2) If there is no subset D' of V such that $D \subset D' \subset V$ and D' is an independent vertex set.
 - 3. Restrained Vertex Domination on S-V alued Graphs

In this section, we introduce the notion of restrained vertex domination on S- valued graph, analogous to the notion in crisp graph theory, and prove some simple results.

Definition 3.1. Consider the S- valued graph $G^S = (V, E, \sigma, \psi)$. A subset $D \subseteq V$ is said to be a restrained weight dominating vertex set if

- (1) D is a weight dominating vertex set.
- (2) For each $v \in V D$ is dominated by a vertex in D and also by a vertex in V D.

Example 3.2. Let $(S = \{0, a, b, c\}, +, \cdot)$ be a semiring with the following Cayley Tables:

+	0	а	b	С	•	0	а	b	С
0	0	а	b	С	0	0	0	0	0
а	а	а	а	а	а	0	а	а	а
b	b	а	b	b	b	0	b	b	b
С	С	а	b	С	С	0	b	b	b

Let \leq be a canonical pre-order in *S*, given by

 $0 \le 0, 0 \le a, 0 \le b, 0 \le c, a \le a, b \le b, b \le a, c \le c, c \le a, c \le b$ Consider the *S*- graph *G^s*:

Define $\sigma: V \rightarrow S$ by

 $\begin{aligned} \sigma(v_1) &= \sigma(v_2) = \sigma(v_5) = \sigma(v_6) = \sigma(v_8) = b, \ \sigma(v_3) = \sigma(v_4) = \sigma(v_7) = a \\ \text{and } \psi &: E \to S \text{ by} \\ \psi(v_1, v_2) &= \psi(v_1, v_4) = \psi(v_1, v_5) = \psi(v_1, v_6) = \psi(v_1, v_7) = \psi(v_1, v_8) = \psi(v_2, v_3) = \\ \psi(v_2, v_4) &= \psi(v_2, v_6) = \psi(v_3, v_5) = \psi(v_4, v_5) = \psi(v_4, v_6) = \psi(v_4, v_8) = \psi(v_6, v_7) = \\ \psi(v_7, v_8) = b, \\ \psi(v_3, v_4) &= \psi(v_4, v_7) = a. \\ \text{Clearly } D = \{v_3, v_4, v_7\} \text{ is a restrained weight dominating vertex set.} \\ \text{Further } D_1 = \{v_3, v_4\}, D_2 = \{v_3, v_7\}, D_3 = \{v_4, v_7\}, D_4 = \{v_4\} \text{ are all restrained weight dominating vertex sets.} \end{aligned}$

Definition 3.3. A subset $D \subseteq V$ is said to be a minimal restrained weight dominating vertex set if

- (1) D is a restrained weight dominating vertex set.
- (2) No proper subset of D is a restrained weight dominating vertex set.

In example 3.2, $D_4 = \{v_4\}$ is a minimal restrained weight dominating vertex set.

Definition 3.4. The restrained vertex domination number of G^{S} denoted by $\gamma_{RV}^{S}(G^{S})$ is defined by $\gamma_{RV}^{S}(G^{S}) = (|D|_{S}, |D|)$, where D is the minimal restrained weight dominating vertex set.

In example 3.2, $D_4 = \{v_4\}$ is a minimal restrained weight dominating vertex set.

$$\gamma_{RV}^{S}(G^{S}) = (|D_{4}|_{S}, |D_{4}|) = (a, 1)$$

International Journal of Engineering and Techniques - Volume 10 Issue 3, May 2024

Definition 3.5. A subset $D \subseteq V$ is said to be a maximal restrained weight dominating vertex set if

- (1) D is a restrained weight dominating vertex set.
- (2) If there is no subset D' of V such that $D \subset D' \subset V$ and D' is a restrained weight dominating vertex set.

In example 3.2, $D = \{v_3, v_4, v_7\}$ is a maximal restrained weight dominating vertex set.

Definition 3.6. A subset $M \subseteq V$ is said to be an independent restrained weight dominating vertex set if M is both independent vertex set and a restrained weight dominating vertex set.

In example 3.2, $D_2 = \{v_3, v_7\}$ is an independent restrained weight dominating vertex set.

Theorem 3.7. A restrained weight dominating vertex set D of a graph G^S is a minimal restrained weight dominating vertex set of G iff every vertex $v \in D$ satisfies atleast one of the following properties:

- (1) there exist a vertex $f \in V D$, such that $N_{S}(f) \cap (D \times S) = \{(v, \sigma(v))\}$
- (2) v is adjacent to no vertex of D.

Proof: Let $v \in D$. Assume that v is adjacent to no vertex of D, then $D - \{v\}$ cannot be a restrained weight dominating vertex set. $\Rightarrow D$ is a minimal restrained weight dominating vertex set.

On the other hand, if for any $v \in D$ there exist a $f \in V - D$ such that $N_s(f) \cap (D \times S) = \{(v, \sigma(v))\}$

Then f is adjacent to $v \in D$ and no other vertex of D.

In this case also, $D - \{v\}$ cannot be a restrained weight dominating vertex set of G^{S} .

Hence D is a minimal restrained weight dominating vertex set.

Conversely, assume that D is a minimal restrained weight dominating vertex set of G^{S} .

Then for each $v \in D$, $D - \{v\}$ is not a restrained weight dominating vertex set of G^{S} .

: there exist a vertex, $f \in V - (D - \{v\})$ that is adjacent to no vertex of $(D - \{v\})$. If f = v, then v is adjacent to no vertex of D.

If f/= v, then D is a restrained weight dominating vertex set and $f \notin D \Rightarrow f$ is adjacent to atleast one vertex of D. However f is not adjacent to any vertex of $D - \{v\}$.

 $\Rightarrow N_{S}(f) \cap D \times S = \{(v, \sigma(v))\}.$

Theorem 3.8. A set $D \subseteq V$ of G^S is an independent restrained weight dominating vertex set iff D is a maximal independent vertex set in G^S .

Proof: Clearly every maximal independent vertex set D in G^s is an independent restrained weight dominating vertex set.

Conversely, assume that *D* is an independent restrained weight dominating vertex

International Journal of Engineering and Techniques - Volume 10 Issue 3, May 2024

set.

Then D is independent and every vertex not in D is adjacent to a vertex of D and therefore D is a maximal independent edge set in G^{S} .

Theorem 3.9. Every maximal independent vertex set of vertices D in G^{S} is a minimal restrained weight dominating vertex set.

Proof : Let D be a maximal independent vertex set of vertices D in G^{S} . Then by theorem 3.8, D is a restrained weight dominating vertex set.

Since D is independent, every vertex of D is adjacent to no vertex of D. Thus, every vertex of D satisfies the second condition of theorem 3.7. Hence D is a minimal restrained weight dominating vertex set in G^{S} .

Theorem 3.10. If $D \subseteq V$ is a minimal restrained weight dominating vertex set of G^{S} without S- isolated vertices then V - D is also a restrained weight dominating vertex set of G^{S} .

Proof: Let $v \in D$. Then by theorem 3.7,

- (1) there exist a vertex $u \in V D$ such that $N_s(u) \cap D = \{v\}$
- (2) v is adjacent to no vertex of D.

In the first case, v is adjacent to some vertex in V – D.

In the second case, v is an S- isolated vertex of the subgraph spanned by $\langle D \rangle$. But v is not S- isolated in G^{S} .

Hence v is adjacent to some vertex of V – D.

Thus V - D is a restrained weight dominating vertex set of G^{S} .

REFERENCES

- [1] Berge C: Theory of Graphs and its Applications, Methuen, London, (1962).
- [2] **Bondy J A and Murty U S R:** *Graph Theory with Applications*, North Holland, New York (1982).
- [3] Gayla S.Domke, Johannes H.Hattingh, Stephe T.Hedetniemi, Renu C.Laskar, Lisa R.Markus: *Restrained domination in graphs*, Discrete Mathematics 203(1999)61-69.
- [4] Jonathan Golan: Semirings and Their Applications, Kluwer Academic Publishers, London.
- [5] Mangala Lavanya.S, Kiruthiga Deepa.S and Chandramouleeswaran.M: Degree Regularity on edges of S valued graph, IOSR - Journal of mathematics., Volume 12, Issue 5, Ver VII (sep-Oct 2016), pp 22-27.
- [6] Rajkumar.M, Jeyalakshmi.S and Chandramouleeswaran.M: Semiring-valued Graphs, International Journal of Math. Sci. and Engg. Appls., Vol. 9 (III), 2015, 141 -152.
- [7] Jeyalakshmi.S and Chandramouleeswaran.M: Vertex domination on S Valued graphs, IOSR - Journal of mathematics, Volume 12, Issue 5 Ver. IV (Sep. - Oct.2016), PP 08-12