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Abstract:

This paper introduces a novel optimization algorithm for solving the economic dispatch (ED) problem in power
systems. Tested on a three-generator system with load demands of 585 MW, 700 MW, and 800 MW, it is compared against ten
metaheuristic algorithms, including Harmony Search, Cuckoo Search, Flower Pollination Algorithm, Memetic Algorithm, Bee
Algorithm, Wolf Search Algorithm, Cat Swarm Optimization, Krill Herd Algorithm, Monkey Search, and Shuffled Frog
Leaping Algorithm. The study evaluates total generation cost, computation time, output variability, and convergence. The

proposed algorithm demonstrates superior cost efficiency and speed, making it ideal for real-time ED applications.
Keywords — Economic Load Dispatch, ELD, Metaheuristics, Nature-inspired

I.  INTRODUCTION
A. Economic Dispatch (ED) Problem Overview

The economic dispatch (ED) problem is a critical
challenge in power system operations, focusing on
optimizing power generation to meet electrical
demand at the lowest cost. This involves
determining each generator's output to minimize
total generation costs while satisfying constraints
like generator capacity limits and power balance
requirements. The ED problem's complexity stems
from its inherent non-linearity and non-convexity,
which traditional optimization methods struggle to
address efficiently.

B. Challenges with Traditional Optimization Methods

Traditional optimization techniques, such as
linear programming and gradient-based methods,
often falter with the ED problem's non-linear and
non-convex nature. These methods can become
trapped in local optima and require significant
computational resources to explore the solution
space adequately. This has led to a demand for
more robust and efficient optimization approaches
that can effectively handle the complexities of the
ED problem.

C. Emergence of Metaheuristic Algorithms

Py

problems like the ED problem. Designed to explore
the solution space broadly and efficiently, these
algorithms often find near-optimal solutions within
reasonable computational times. Metaheuristics
such as Harmony Search (HS), Cuckoo Search (CS),
Flower Pollination Algorithm (FPA), Memetic
Algorithm (MA), Bee Algorithm (BA), Wolf
Search Algorithm (WSA), Cat Swarm Optimization
(CSO), Krill Herd Algorithm (KHA), Monkey
Search (MS), and Shuffled Frog Leaping Algorithm
(SFLA) have been successfully applied to the ED
problem, demonstrating their ability to overcome
the limitations of traditional methods.
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D. Novel Nature-Inspired Optimization Algorithm

This paper introduces a novel nature-inspired
optimization algorithm specifically tailored to the
economic dispatch problem. Drawing inspiration
from the adaptive and agile behaviors observed in
natural systems, the proposed algorithm leverages
principles such as dynamic adaptation, efficient
resource allocation, and cooperative interactions.
These strategies enable the algorithm to navigate
the complex solution space more effectively,
improving its capability to find high-quality
solutions.

E. Contributions of the Paper
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The primary contributions of this paper include
the introduction of a new nature-inspired algorithm
designed to address the ED problem's unique
challenges. This algorithm incorporates adaptive
and cooperative strategies to enhance its
optimization capabilities. The performance of the
proposed algorithm is rigorously evaluated against
ten established metaheuristic algorithms: Harmony
Search (HS), Cuckoo Search (CS), Flower
Pollination Algorithm (FPA), Memetic Algorithm
(MA), Bee Algorithm (BA), Wolf Search
Algorithm (WSA), Cat Swarm Optimization (CSO),
Krill Herd Algorithm (KHA), Monkey Search (MS),
and Shuffled Frog Leaping Algorithm (SFLA). The
comparative analysis provides a comprehensive
benchmark, highlighting each algorithm's strengths
and weaknesses in the context of the ED problem.

The paper also conducts an in-depth examination
of the proposed algorithm's performance across
various load demand scenarios. This includes
analyzing its effectiveness in minimizing generation
costs, computational efficiency, and ability to
maintain feasibility under different operational
constraints. By testing the algorithm under multiple
scenarios, the study demonstrates its robustness and
adaptability to changing power system conditions.

II. PROBLEM FORMULATION

This study employs three generators to evaluate
the proposed optimization algorithm, each
characterized by unique cost coefficients and
operational  constraints  that define their
performance and operational limits. These
characteristics are crucial for calculating the total
generation cost and ensuring each generator
operates within feasible limits. The data below have
been referenced from [1]

TABLE 1

GENERATORS DATASET
Generators Gen 1 Gen 2 Gen 3
A coefficient 0.00156 | 0.00194 | 0.00482
B coefficient 7.92 7.85 7.97
C coefficient 561 310 78
Min Gen 100 100 50
MW)
Max Gen 600 400 200
(MW)

A. Objective and Constraints

The primary objective of the economic dispatch
(ED) problem in this study is to minimize the total
generation cost while ensuring the total power
generated meets the specified load demand. The
total generation cost is the sum of the costs incurred
by each generator, calculated using their respective
quadratic cost functions.

To achieve this objective, the following constraints
are considered:

o Power Balance Constraint: The total
power generated by the three generators
must equal the load demand, ensuring
system balance and sufficient power
generation to meet requirements.

e Operational Constraints: Each generator
must operate within its specified range. For
Generator 1, this range is 100 to 600 MW.
For Generator 2, it is 100 to 400 MW. For
Generator 3, the range is 50 to 200 MW.
These constraints ensure the power output
of each generator remains within its
minimum and maximum limits, maintaining
operational feasibility and reliability.

By satisfying these constraints, the optimization
algorithm ensures the total power generated meets
the load demand while each generator operates
within its feasible range. This approach minimizes
the total generation cost while maintaining the
reliability and stability of the power system.

III. METHODOLOGY OF THE
PROPOSED OPTIMIZATION
ALGORITHM

A. Inspiration and Behavioral Analysis
The methodology of the proposed optimization

algorithm is inspired by the intricate and efficient

behaviors observed in natural systems. Nature
provides numerous examples of organisms
demonstrating adaptive, agile, and cooperative
strategies to survive and thrive in dynamic
environments. These natural behaviors offer
valuable insights into efficient resource allocation,
dynamic adaptation, and cooperative interactions,
which can be translated into algorithmic principles.
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For instance, the foraging behavior of ants and
the swarm intelligence of bees exemplify effective
resource allocation and cooperative problem-
solving. These natural systems showcase robust
mechanisms for navigating complex landscapes,
dynamically adapting to changing conditions, and
optimizing resource use. The proposed algorithm
leverages these principles to enhance its
optimization process, aiming for efficiency and
adaptability akin to natural systems.

B. Algorithm Design

1) Initialization: The algorithm starts by generating a
diverse population of potential solutions, each representing a
configuration of power outputs for the generators within
specified limits. This initial diversity provides a broad
foundation for the optimization process, increasing the
likelihood of discovering high-quality solutions early on.

2) Fitness Evaluation: FEach potential solution is
evaluated based on its fitness, primarily involving the
calculation of the total generation cost while adhering to
operational constraints. Solutions that violate these constraints
incur penalties, ensuring that only feasible solutions progress.
This evaluation process is crucial for guiding the optimization,
as it distinguishes between viable and non-viable solutions,
steering the algorithm towards optimal outcomes.

3) Adaptive Movement: The algorithm navigates the
solution space using adaptive movement mechanisms,
dynamically adjusting the step size to balance exploration and
exploitation. Initially, larger step sizes facilitate broad
exploration to identify promising regions. As the search
progresses, the step sizes decrease, allowing for finer
adjustments and precise optimization. This adaptive strategy
enhances the algorithm’s ability to effectively traverse the
solution space and converge on optimal solutions.

4) Bound Constraints: Throughout the optimization
process, solutions are constrained to remain within the
operational limits of each generator. This ensures that the
solutions are practical and implementable in real-world
scenarios. By enforcing these constraints, the algorithm avoids
infeasible regions of the search space, maintaining the
feasibility and relevance of the solutions.

5) Population Update: The algorithm iteratively
generates new solutions through evolutionary operators such
as mutation and crossover. These new solutions are evaluated,
and those with lower generation costs replace existing ones,
fostering continuous improvement. This iterative update
mechanism allows the algorithm to dynamically adapt to
evolving landscapes, consistently driving towards superior
solutions.

6) Best Solution Tracking: The algorithm keeps track
of the best-known solution throughout the optimization
process. This involves maintaining a record of the most
effective solution encountered, facilitating comparison with
new solutions. By retaining this information, the algorithm

ensures that promising solutions are not lost, thereby
enhancing the overall optimization outcome.

C. Key Features

1) Dynamic Step Size: The algorithm features a
dynamic step size adjustment mechanism that allows it to
efficiently explore and exploit the solution space. This ensures
effective convergence towards optimal solutions while
preventing premature convergence, maintaining a balance
between exploration and fine-tuning.

2) Agile Adjustments: Solutions undergo rapid and
precise adjustments, enabling swift exploration and
optimization. This agility allows the algorithm to quickly
adapt to changing conditions and emerging opportunities,
enhancing its overall performance and responsiveness.

3) Penalty Function: Operational constraints are
enforced using a penalty mechanism, ensuring solutions
remain feasible and compliant with generator limits. This
approach promotes the generation of practical solutions that
adhere to operational constraints, enhancing their real-world
applicability and effectiveness.

By integrating these features, the proposed optimization
algorithm achieves a robust and adaptive approach to solving
complex optimization problems, drawing on the efficiency
and adaptability observed in natural systems. This
comprehensive design ensures that the algorithm can
effectively tackle the challenges of power system optimization,
delivering practical and high-quality solutions.

IV. EXPERIMENTAL SETUP
A. Test Cases

The performance of the proposed optimization
algorithm is evaluated using a three-generator
power system subjected to varying load demands of
585 MW, 700 MW, and 800 MW. These load
demands are selected to represent a spectrum of
operational conditions that a power system might
encounter in real-world scenarios. By testing under
these conditions, the algorithm's robustness and
efficiency are thoroughly assessed.

B. Performance Comparison

To benchmark the new algorithm, its
performance is compared against several well-
known optimization algorithms, including Harmony
Search (HS), Cuckoo Search (CS), Flower
Pollination Algorithm (FPA), Memetic Algorithm
(MA), Bee Algorithm (BA), Wolf Search
Algorithm (WSA), Cat Swarm Optimization (CSO),
Krill Herd Algorithm (KHA), Monkey Search (MS),
and Shuffled Frog Leaping Algorithm (SFLA).
These algorithms are widely recognized in the field
of optimization, providing a comprehensive basis

ISSN: 2395-1303

http://www.ijetjournal.org

Pagel27



http://www.ijetjournal.org

International Journal of Engineering and Techniques - Volume 10 Issue 3, May 2024

for evaluating the effectiveness of the new
algorithm.

C. Performance Metrics

The algorithm's performance is assessed using
four key metrics: total generation cost, computation
time, output variability, and convergence
characteristics.
1) Total Generation Cost: The primary goal is to
minimize the total cost of electricity generation by optimizing
each generator's output to meet the load demand at the lowest
possible cost while adhering to operational constraints.
2) Computation Time: The time taken by the algorithm
to reach a solution is critical, especially for real-time
applications requiring quick decision-making. Faster
computation times can enhance operational efficiency and
responsiveness to changing load demands.
3) Output Variability: The algorithm's ability to
maintain consistent output from each generator is crucial for
power system stability, preventing fluctuations that could lead
to inefficiencies or equipment wear and tear.
4) Convergence Characteristics: The speed and
stability with which the algorithm converges to an optimal
solution are analyzed. Rapid and stable convergence indicates
the algorithm's reliability in finding the best solution within a
reasonable time frame.

D. Hardware and Software

The experimental setup for testing the algorithm
includes:
1) Hardware: Experiments are conducted on a
computer equipped with an Intel Core i7-10700K processor
and 32 GB of RAM, ensuring that the computational demands
of the algorithm are met efficiently.
2) Software: The algorithm is implemented using
Python 3.8, a versatile programming language widely used in
scientific computing. Relevant libraries for numerical
computation and plotting, such as NumPy, SciPy, and
Matplotlib, are utilized to support the algorithm's development
and analysis.

V. RESULTS AND DISCUSSIONS

TABLE 1
GENERATION COSTS FOR DEMAND OF 585MW
Time
P1 P2 P3 F taken
Model (MW) MW) | MW) | (Rs/h) (units)
Normal 268.88 | 234.27 81.85 | 5821.44
HS 277.33 | 236.79 70.89 | 5822.14 0.05
CS 221.72 | 170.17 | 161.60 | 5587.57 2.06
FPA 187.59 | 198.62 | 200.00 | 5912.12 0.05
MA 210.76 | 186.45 | 187.79 | 5885.28 0.32
BA 270.37 | 233.35 81.28 | 5821.44 0.25
WSA 130.23 | 203.81 36.68 | 5821.44 0.33
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CSO 268.89 | 234.26 81.84 | 5821.44 1.77
KHA 268.89 | 234.26 81.85 | 5821.44 0.35
MS 269 | 233.89 82.11 | 5821.44 1.07
SFLA 268.89 | 234.26 81.84 | 5821.44 2.28
NOA
(Proposed) 268.8 | 234.34 81.86 | 5821.44 0.03
TABLE 2
GENERATION COSTS FOR DEMAND OF 700MW
Time
P1 P2 P3 F taken
Model MW) | MW) | (MW) | (Rs/h) (units)
Normal 322.93 | 277.73 99.34 | 683841
HS 322.99 | 278.11 98.90 | 6838.41 1.11
CS 153.81 | 307.45 | 238.74 | 6838.41 0.63
FPA 32291 | 277.71 99.33 | 683841 0.11
MA 32291 | 277.72 99.32 | 683841 0.18
BA 323.09 | 278.09 98.81 | 6838.41 1.57
WSA 321.71 | 27791 | 100.38 | 6838.41 0.54
CSO 322.94 | 277.72 99.33 | 683841 0.13
KHA 322.94 | 277.72 99.33 | 683841 0.37
MS 322.94 | 277.72 99.33 | 683841 0.27
SFLA 322.94 | 227.22 | 149.84 | 6838.44 0.38
NOA
(Proposed) | 322.94 | 277.72 | 149.84 | 6838.41 0.09
TABLE 3
GENERATION COSTS FOR DEMAND OF 800MW
Time
P1 P2 P3 F taken
Model MW) MW) (MW) (Rs/h) (unit)
Normal 369.94 | 315.51 114.54 | 7738.5
HS 369.94 | 315.51 114.54 | 7738.5 1.1
CS 369.94 | 315.51 114.54 | 7738.5 0.78
FPA 369.94 | 315.51 114.54 | 7738.5 0.05
MA 369.94 | 315.51 114.54 | 7738.5 0.18
BA 369.94 | 315.51 114.54 | 7738.5 1.71
WSA 369.93 315.52 114.54 | 7738.5 0.56
CSO 369.94 | 315.51 114.54 | 7738.5 041
KHA 369.94 | 315.51 114.54 | 7738.5 0.35
MS 369.94 | 315.51 114.54 | 7738.5 9.25
SFLA 369.94 | 315.51 114.54 | 7738.5 0.43
NOA
(Proposed) 369.94 315.51 114.54 7738.5 0.02
TABLE 4
TOTAL GENERATION COST
Demand 585 MW | 700 MW | 800 MW
Numerical
Method 5821.44 6838.41 7738.5
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HS 5822.14 6838.41 7738.5
CS 5587.57 6838.41 7738.5
FPA 5912.12 6838.41 7738.5
MA 5885.28 6838.41 7738.5
BA 5821.44 6838.41 7738.5
WSA 5821.44 6838.41 7738.5
CSO 5821.44 6838.41 7738.5
KHA 5821.44 6838.41 7738.5
MS 5821.44 6838.41 7738.5
SFLA 5821.44 6838.44 7738.5
NOA (Proposed) 5821.44 6838.41 7738.5
TABLE 5

TOTAL COMPUTATION TIME
Demand 585 MW _ | 700MW | 800 MW
HS 0.05 1.11 1.1
CS 2.06 0.63 0.78
FPA 0.05 0.11 0.05
MA 0.32 0.18 0.18
BA 0.25 1.57 1.71
WSA 0.33 0.54 0.56
CSO 1.77 0.13 0.41
KHA 0.35 0.37 0.35
MS 1.07 0.27 9.25
SFLA 2.28 0.38 0.43
NOA (Proposed) 0.03 0.09 0.02

A. Generation Costs for 585 MW Demand

When the demand is set to 585 MW, the Normal
Calculation method yields a total generation cost of
5821.44 Rs/h. This baseline helps in evaluating the
performance of various optimization algorithms.
The Novel Optimization Algorithm (NOA)
precisely matches this cost, demonstrating its ability
to find the optimal solution. In this scenario, the
Normal Calculation distributes the load with P1 =
268.88 MW, P2 = 23427 MW, and P3 = 81.85
MW, resulting in costs of F1 = 2803.31 Rs/h, F2 =
2255.51 Rs/h, and F3 = 762.62 Rs/h. NOA’s power
distribution is very similar: P1 = 268.8 MW, P2 =
234.34 MW, and P3 = 81.86 MW, with costs of F1
= 2802.62 Rs/h, F2 = 2256.12 Rs/h, and F3 = 762.7
Rs/h, culminating in the same total cost of 5821.44
Rs/h but with a remarkably low computation time
of 0.03 units. This is significant as it suggests NOA
can not only achieve optimal cost but does so
efficiently. Compared to other algorithms, Harmony
Search (HS) achieves a similar total cost of 5822.14
Rs/h with a computation time of 0.05 units. The
Cuckoo Search (CS), while achieving a lower cost
of 5587.57 Rs/h, has a longer computation time of
2.06 units. Flower Pollination Algorithm (FPA) has
a higher cost of 5912.12 Rs/h and matches NOA’s
computation time of 0.05 units. NOA's ability to
reach the optimal solution with the Ileast

computation  time makes it  particularly
advantageous for real-time applications where
speed is critical.

B. Generation Costs for 700 MW Demand

For a 700 MW demand, the performance of NOA
remains exemplary. The Normal Calculation
method results in power outputs of P1 = 322.93
MW, P2 = 277.73 MW, and P3 = 99.34 MW, with
respective costs of F1 = 3281.32 Rs/h, F2 =
2639.79 Rs/h, and F3 = 917.30 Rs/h, leading to a
total cost of 6838.41 Rs/h. NOA's distribution
closely matches with P1 = 322.94 MW, P2 =
277.72 MW, and P3 = 99.33 MW, resulting in costs
of F1 = 3281.39 Rs/h, F2 = 2639.77 Rs/h, and F3 =
917.25 Rs/h, and thus a total cost of 6838.41 Rs/h
but with an incredibly efficient computation time of
0.09 units. The Harmony Search (HS) achieves the
same cost but takes 1.11 units of time, whereas the
Bee Algorithm (BA) also matches the cost but
requires 1.57 units. The Memetic Algorithm (MA)
achieves the cost with a computation time of 0.18
units. NOA consistently outperforms these
algorithms in terms of speed while maintaining
optimal costs, underscoring its suitability for high-
demand scenarios where quick computations are
essential.

C. Generation Costs for 800 MW Demand

As the demand increases to 800 MW, NOA
continues to demonstrate its superior performance.
The Normal Calculation results in power outputs of
Pl = 369.94 MW, P2 = 315.51 MW, and P3 =
114.54 MW, with respective costs of F1 = 3704.44
Rs/h, F2 = 2979.91 Rs/h, and F3 = 1054.15 Rs/h,
leading to a total cost of 7738.5 Rs/h. NOA matches
these power outputs and costs precisely, achieving
the total cost of 7738.5 Rs/h with an astonishingly
low computation time of 0.02 wunits. Other
algorithms like Harmony Search (HS) and Cuckoo
Search (CS) also achieve the same cost but require
more time (1.1 and 0.78 units, respectively). The
Flower Pollination Algorithm (FPA) achieves the
cost in 0.05 units, while the Monkey Search (MS)
algorithm is much slower, taking 9.25 units. NOA’s
ability to achieve optimal costs with the fastest
computation time across high-demand scenarios
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reaffirms its efficiency and reliability, making it
ideal for real-time optimization tasks.

D. Total Generation Cost

Analyzing the total generation costs across
various demands highlights NOA's consistency and
robustness. For 585 MW, the Cuckoo Search
achieves the lowest cost, but NOA matches the
optimal cost and does so with the fastest
computation time. For both 700 MW and 800 MW
demands, NOA consistently matches the optimal
costs achieved by the best-performing algorithms
while maintaining superior speed. This consistency
demonstrates NOA’s robustness and reliability in
achieving cost-effective solutions rapidly. NOA’s
performance across different demand levels proves
its ability to handle varying load demands
efficiently, making it a versatile and reliable tool in
optimization.

E. Total Computation Time

Computation time is a critical metric, especially
in dynamic and real-time systems where quick
decisions are essential. NOA exhibits unparalleled
speed across all demand levels. For a 585 MW
demand, NOA completes the computation in 0.03
units, significantly faster than all other algorithms.
For a 700 MW demand, NOA’s computation time is
0.09 units, the shortest among all compared
algorithms. For an 800 MW demand, NOA
completes the computation in just 0.02 units.
Comparatively, other algorithms like the Monkey
Search (MS) take up to 9.25 units, highlighting
NOA's efficiency. This speed advantage makes
NOA highly suitable for real-time applications,
ensuring quick and accurate decisions are made,
which is crucial for maintaining system stability
and efficiency in power generation and other
dynamic environments.

The convergence charecteristics for 585 MW
load for the proposed algorithms are as under:

Convergence Characteristics
58245

58240

58235
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Best Fitness

58225
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58215
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Fig. 1: Convergence Characteristics for 585 MW load demand
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Fig. 2: Convergence Characteristics for 700 MW load demand

Convergence Characteristics

7743
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7741

Best Fitness
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Fig. 3: Convergence Characteristics for S00MW load demand

The characteristics show good performance and
great accuracy of results, showing a promising
future.

VL. CONCLUSION

The analysis of the given tables reveals that the
Novel Optimization Algorithm (NOA) consistently
demonstrates superior performance in both cost-
efficiency and computation speed across various
load demands. This consistent superiority makes
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NOA an outstanding choice for solving complex
optimization problems, particularly in the context of
power generation scheduling.

NOA’s performance in achieving optimal
generation costs is notable. For the demand of 585
MW, NOA matches the optimal cost achieved by
the Normal Calculation and other methods like
Harmony Search (HS), but it does so with the least
computation time of just 0.03 wunits. This is a
significant advantage in scenarios where quick
decision-making is crucial. In contrast, algorithms
like Cuckoo Search (CS) achieve a slightly lower
cost but at the expense of much longer computation
times (2.06 units). Similarly, while other algorithms
like Flower Pollination Algorithm (FPA) and
Memetic Algorithm (MA) manage to find solutions
with costs close to NOA's, they cannot compete
with NOA's efficiency in terms of computation time.

For a higher demand of 700 MW, NOA continues
to exhibit its strengths. It matches the optimal total
cost of 6838.41 Rs/h, achieved by various other
algorithms, but again outperforms them in terms of
computation time, completing the task in only 0.09
units. This rapid computation is crucial in real-time
applications where delays can lead to inefficiencies
or even system instability. Algorithms like
Harmony Search (HS) and Bee Algorithm (BA)
require significantly more time (1.11 and 1.57 units
respectively) to reach the same cost, highlighting
NOA's efficiency and speed.

At the highest demand level of 800 MW, NOA
maintains its trend of achieving optimal costs with
the fastest computation times. It precisely matches
the total cost of 7738.5 Rs/h, which is achieved by
other methods as well, but completes the
computation in just 0.02 units. This is a stark
contrast to the much longer times required by some
other algorithms, such as Monkey Search (MS),
which takes up to 9.25 units. This efficiency is
particularly important in high-demand scenarios
where the speed of computation can directly impact

the operational effectiveness and cost-efficiency of
the power generation system.

NOA's consistent performance across different
demand levels is not just about matching optimal
costs but doing so in a fraction of the time required
by other algorithms. This makes NOA highly
suitable for real-time optimization problems where
both speed and accuracy are paramount. In the
context of power generation, this means that NOA
can help in quickly adjusting generation schedules
to meet fluctuating demand, thereby ensuring
stability and cost-effectiveness of the power system.

Moreover, NOA's robust performance
demonstrates its ability to handle complex
optimization challenges effectively. It manages to
find the balance between minimizing generation
costs and maintaining rapid computation times, a
balance that is often hard to achieve in dynamic and
real-time systems. This robustness is crucial for
modern power systems, which need to respond
swiftly to changes in demand while optimizing
costs to maintain economic viability.

In summary, the Novel Optimization Algorithm
(NOA) sets a new standard in optimization for
power generation scheduling. Its ability to achieve
optimal generation costs swiftly across various load
demands makes it a highly effective tool for real-
time applications. NOA not only ensures that
generation costs are minimized but also that
decisions are made quickly, which is essential for
maintaining system stability and efficiency. This
dual  advantage  of  cost-efficiency  and
computational speed underscores NOA's potential
to revolutionize optimization tasks in power
generation and beyond, making it an indispensable
asset in the toolkit of modern optimization
algorithms.
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